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1 Introduction

Let G = (V,E) be an undirected graph, which is simple
and connected. An edge ranking of a graph G = (V,E)
is a labeling r: E—Z*, with the property that every path
between two edges with the same label i contains an in-
termediate edge with label j > i. An edge ranking by
integers 1,2,...,k is called a k-edge ranking. A graph G
is said to be k-edge rankable if it has a k-edge ranking.
An edge ranking is minimum if the largest rank £ in it
is the smallest among all edge rankings of G; such k is
called the minimum edge rank of G and is denoted by
rank(G). The minimum edge ranking problem (MER)
asks to compute a minimum edge ranking of a given
graph G. It is known that MER is in general NP-hard
[6], but it can be solved in polynomial time when the
graph is a tree [1, 5].

In this paper, we newly consider the following prob-
lem, which resembles MER but is essentially different.

MERST (minimum edge ranking spanning tree prob-
lem)

Input: A simple undirected graph G = (V,E) which is
connected, and a nonnegative integer k.

Question: Does G have a k-edge rankable spanning tree
(i.e., does there exist a spanning tree T = (V,E7) of G
with rank(T) < k)?

Fig. 1 gives an example of a minimum edge ranking
spanning tree of a graph G, together with its edge rank-
ing. Problem MERST can be found in many practical
applications.

Figure 1: A minimum edge rénking spanning tree T of the
graph G.
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In this paper, we show that MERST is NP-hard,
and present an approximation algorithm for MERST,
with its worst case performance ratio min{(A* —
1)logn/A*,A* — 1}/(log(A* + 1) — 1), where n is the
number of vertices in G and A* is the maximum degree
of a spanning tree whose maximum degree is minimum.

2 NP-hardness of MERST

In this section, we claim that MERST is intractable. The
idea of our proof is based on the NP-hardness proof of
the connected size-k-partition problem for planar bipar-
tite graphs [2]. For a vertex set W C V, G[W] denotes
the subgraph of G induced by W.

Lemma 1 Any connected graph G with rank(G) =k has
at most 2% vertices.

For a graph G = (V, E) and a positive integer k, a size-
k-partition of V is a (|V|/k)-tuple (V1,V3,...,Vjy|/) and
V=WUWU---UVy i ViNV; =0 for all i # j such
that |V;| = k for i = 1,2,...,|V|/k. Each V; is called an
element of the partition. A size-k-partition of V is con-
nected if the graphs G[V;] are connected for all i. Let
G = (V,E) be a graph with |V| = 2%, where k > 0. We
say that G has a nested partition if it recursively satisfies
one of the following conditions:

() k=0, or '

(ii) G has a connected size-2¢~!-partition (V;,V,)
such that both G[V,] and G[V,] have nested partitions.

Lemma 2 Let G = (V,E) be a graph with |V| =2 (k>
0). Then G has a k-edge rankable spanning tree if and
only if it has a nested partition.

This lemma provides the essential idea of NP-
completeness proof of MERST, i.e., to find a k-edge
rankable spanning tree of G is equivalent to find a nested
partition of G.

Theorem 1 MERST is NP-complete.
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3 An Approximation Algorithm for MERST

‘Since MERST is NP-hard, we propose an approximation

algorithm, which is a combination of two existing algo-
rithms for the minimum degree spanning tree problem
(MDST) and for the minimum edge ranking problem of
trees (which is MER whose input graphs are restricted
to be trees). We state its approximation ratio hére, and
analyze the algorithm in the next section.

We denote the maximum degree of vertices in a
graph G by Ag, and the maximum degree of the mini-
mum degree spanning tree T of G by A* (= Ar). Al-
though MDST is known to be NP-hard [4], Fiirer and
Raghavachari [3] developed a polynomial time approxi-
mation algorithm which computes a spanning tree T sat-
isfying

A*<Ar < A'+1 (S Ag). I

Our approximation algorithm for MERST first com-
putes a spanning tree Tapprox Of G satisfying (1) (by us-
ing the algorithm in [3]), and then computes its mini-
mum edge ranking. Recall that MERT is polynomially
solvable (e.g., [5]). Thus, our algorithm described below
can be executed in polynomial time.

Algorithm APPROX_MERST

Input: A graph G = (V,E).

Output: A spanning tree T of G and its edge ranking r.
Step 1: Compute a spanning tree Tapprox Of G satisfying
(1). -

Step 2: Compute a minimum edge ranking r of Tapprox-
-Step 3: Output T = Tppprox and its edge ranking r.

Theorem 2 For a graph G = (V,E) with |V| =n, let
Tuin denote a minimum edge ranking spanning tree of
G, and let Typprox denote a spanning tree of G computed
by algorithm APPROX_-MERST for the input G.  Then,
the approximation ratio of algorithm APPROX_MERST
can be bounded from above by
min{(A* — 1) logn/A*,A* — 1}
log(A*+1) -1 ’
where A* is the maximum degree of the minimum degree
spanning tree of G.

rank ( TApprox)
rank ( TMi,, )

4 Analysis of Edge Ranking of Trees

In this section, we derive upper and lower bounds on
rank(7T') of a tree T = (V,Er) in terms of the number

h > 2. Then, T,y satisfies rank(T(a ) >

of vertices n = |V| and its maximum degree Ar, in or-
der to prove the approximation ratio of algorithm AP-
PROX_MERST.

Lemma3 For any tree T = (V,Er), rank(T) >
max{Ar, [logn|} holds, where Ar is the maximum de-
gree of vertices in T and n = |V|. ’

Lemmad4 Let T = (V,Er) be a tree with |V| = n. Then
it holds that - '

rank(T) = [logn] if Ar=0,1,2 (2
(Ar —2)logn

-rank(T) <
rank(T) < logar |

if Ar > 3. 3)

This lemma, together with Lemma 3, proves Theorem
2, since the algorithm of Fiirer and Raghavachari [3] can
find a spanning tree T of G such that A* <Ar < A*+1
in the first step of APPROX_MERST.

Let T(4 ) denote a tree in which all the inner vertices
have the same degree d and there exists a vertex vg such
that the distances between vg and all the leaves are ex-

actly h. This T(4,ny attains the upper bound of Lemma
4.

Lemma 5 Let d and h be integers such that d > 3 and
(d—2)logn
~ log(d-1)
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