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1 Introduction

Let G = (V, E) stand for an undirected multigraph with

a set V of vertices and a set E of edges. The connectivity
augmentation problem has been extensively studied as an
important problem in the network design problem.
. The local edge-connectivity Ag(z,y) for two vertices
z,y € V is defined to be the minimum size of a cut in
G that separates z and y (i.e., z and y belong to differ-
ent sides of X and V — X)), or equivalently the maximum
number of edge-disjoint path between z and y. The local
vertex-connectivity kg(z,y) for two vertices z,y € V is de-
fined to be the number of internally-disjoint paths between
z and y in G. For a given integer ¢ (resp., k), we call G
¢-edge-connected (resp., k-vertez-connected) if Ag(z,y) > £
(resp., kg(z,y) > k) holds for every z,y € V.

In this paper, we consider the problem of augmenting the
edge-connectivity and the vertex-connectivity of a given
graph G simultaneously by adding the smallest number of
new edges. For two given integers £ and k, we say that G
is (€, k)-connected if G is é-edge-connected and k-vertex-
connected. Given a multigraph G = (V, E), and two in-
tegers £ and k, the edge- and vertez-connectivity augmen-
tation problem, denoted by EVAP(¢, k), asks to augment
G by adding the smallest number of new edges to G so
that the resulting graph G’ becomes (¢, k)-connected. Re-
cently, the authors proved that EVAP(Z, 2) can be solved in
O((nm +n? logn) logn) time [2], and that EVAP(¢, 3) can
be solved in polynomial time (in particular, O(n?) time if
an input graph is 2-vertex-connected) for any fixed integer
£ [3, 4]. In this paper, we show that if an input graph G is
(k — 1)-vertex-connected (k > 4), then G can be made ¢-
edge-connected and k-vertex-connected by adding at most
2¢ surplus edges over the optimum in polynomial time.

2 Definitions

For a subset V! C V in G, G — V' denotes the subgraph
induced by V — V', For an edge set F with FNE = 0, we
denote G = (V, EUF) by G+ F. An edge with end vertices
w and v is denoted by (u,v). A partition Xy, --, X, of
vertex set V' means a family of nonempty disjoint subsets
of V whose union is V| and a subpartition of V means
a partition of a subset of V. For two disjoint subsets of
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vertices X, Y C V, we denote by Eg(X,Y) the set of
edges, one of whose end vertices is in X and the other is
in Y, and also denote c¢(X,Y) = |Eq(X,Y)]. A cutis
defined as a subset X of V with § # X # V, and the
size of a cut X is denoted by ¢g(X,V — X), which may
also be written as cg(X). A cut with the minimum size
is called a minimum cut, and its size, denoted by A(G),
is called the edge-connectivity of G. For a subset X of V,
{veV~-X](uv)€FE for some u € X} is called the
neighbor set of X, denoted by I'c(X). Let p(G) denote
the number of components in G. A disconnecting set of
G is defined as a cut S of V such that p(G — S) > p(G)
holds and no S’ C S has this property. If G is connected
and does not contain K,, then a disconnecting set of the
minimum size is called a minimum disconnecting set, and
its size, denoted by &(G), is called the vertez-connectivity
of G. On the other hand, we define x(G) = 0 if G is not
connected, and kK(G) = n—1if G is connected and contains
the complete graph K,. For a vertex set S in G, we call
the components in G — S the S-components, and denote
the family of all S-components by C(G — S).

A cut T C V is called tight if C¢(T) is a minimum dis-
connecting set in G. A tight set D is called minimal if no
proper subset D' of D is tight. We denote the maximum
number of pairwise disjoint minimal tight sets by ¢(G).

2.1 Edge-Splitting

Given a multigraph G = (V, E), a designated vertex
s € V, vertices u,v € I'g(s) (possibly ©v = v) and a
nonnegative integer § < min{cq(s,u),cq(s,v)}, we con-
struct graph G' = (V,E’') from G by deleting ) edges
from Eg(s,u) and Eg(s,v), respectively, and adding new
6 edges to Eg(u,v). We say that G’ is obtained from G by
splitting (s,u) and (s,v) by size 8.

Given a multigraph G = (V,E) and s € V with
Ac(z,y) > £ for all pairs z,y € V — s, a pair {(s,u), (s,v)}
of two edges in Eg(s) is called A-splittable, if the multi-
graph G' resulting from splitting edges (s,u) and (s,v)

satisfies Agi(z,y) > € for all pairs z,y € V ~s. It is known
in [5] that there is always a A-splittable pair two edges
incident to s, if cq(s) is even and ¢ > 2 holds.

Given a multigraph G = (V, E) and s € V with |V| >
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k + 2 and kg(z,y).> k for all pairs z,y € V — s, a pair
{(s,u), (s,v)} of two edges in Eg(s) is called x-splittable,
if the multigraph G’ resulting from splitting edges (s,u)
and (s,v) satisfies kg (z,y) > k for all pairs z,y € V — s.
It is known in [1] that there is always a k-splittable pair
{(s,u), (s,v)}, if one of the following holds; (i) k(G — s) =

k—12>1and t(G - s) > max{2k — 2,k + 2} hold and
G — 5 has an S-component T with p((G —s) — S) > 3 and
ITe(s)NT| > 2 for some disconnecting set S in G —s, (ii) if
kK(G—s)=k—1>1and¢(G-s)>k+2hold and G-
has a disconnecting set S with p((G —s) — §) = 2.

3 An Algorithm for EVAP(¢, k)

We now present a polynomial time algorithm for
EVAP(¢,k) for-a (k—1)-vertex-connected input multigraph.

Let ﬂ(G) = max{p(G — S) | S is a disconnecting set in
G}. To make a graph G (¢, k)-connected, it is necessary
to add at least € — ¢ (X) edges to Eq(X,V — X) for each
cut X, to add at least k — |T'(X)| edges to Eq(X,V ~ X)
for each cut X with V — X —T'g(X) # 0, and to add at
least p(G — S) — 1 edges to connect components of G — S
for each disconnecting set S in G.

"~ Lower Bound: ’y(G) = ma.x{[a(G )/21,8(G

a(G) = max Z(f —ca(X )+Z
i=1 i=p+l

and the max is taken over all subpartmons {Xy,--,

X5, Xp41,-+,Xq} of V such that ¢ > p > 0 and V —

Xi—[‘(;(X,')¢(0,i=p+1,~-',q. . a
The sketch of our algorithm for solving the EVAP(¢, k)

for a (k — 1)-vertex-connected multigraph, denoted by Al-

gorithm EV-AUG, is given as follows

Algorithm EV-AUG

Input: An undirected multigraph G = (V, E) with |V{| >

k+1, k(G) =k —1, and an integer £ > k > 4.

Output: A set of new edges F with |F| < opt(G) + 2€such
that G* = G + F satisfies A(G*) > € and &(G*) > k.

IF(,(X

Step I. (Adding vertex s and associated edges): If
Q) 'S 2¢ + 1 holds, then after adding a new vertex
s, we can add a set Fy of new edges betwecen s and
V so that |Fi| £ a(G) and the resulting graph G, =
(V U {s}, E U F,) satisfies cq,(X) > £ for all cuts
X C V. After setting G' := G; and G’ := G, — s, go
to Step II1. If ¢(G) > 2¢ + 2 holds, then after adding a
new vertex s, we can add a set Fj of new edges between
s and V so that |F}| = a(G) and the resulting graph
G, = (V U {s}, EU F}) satisfies ¢, (X) > ¢ for all
cuts X C V, |[Tg(X)| 2 k for all cuts X C V with
V — X —Tg,(X) # 0. After setting G’ := G, and

‘G' := G, — s, go to Step II.

Step II. (Edge-splitting): While t(G’) > 2 + 2 holds
repeat the following procedure.

— 1}, where -

If B(G7) — 1 < [t(G")/2], then we split a A-splittable
and k-splittable pair (s,u) and (s,v) which decreases
t(G") by at least one. Set G’ := G' — {(s,u),(s,v)} +
{(u,v)}, G" := G’ — 5, and go to Step 1.

If B(G) ~1 > [tG")/2], then execute the following
procedure. If there is a A-splittable and x-splittable
pair (s,u) and (s,v) which decreases B(G’) by one,
after at most one undoing an edge-splitting and at

- most one replacing one edge incident to s, then we split
(s,u) and (s,v), set G’ := G'—{(s,u), (s5,v)}+{{u,v)},
G’ := G' — s, and go to Step II. Otherwise we can
‘add more B(G) — 1 — [a(G)/2] new edges to obtain
a (¢, k)-connected graph, after splitting all remaining
edges incident to s such that all pairs are A-splittable
(according to [5]). Output a set of all added edges to .
G as an optimal solution. ) :

Step III. (Edge augmentation): Now t(G’) < 2¢ + 1
holds and G’ satisfies ¢g/(X) > £ for all cuts X C V.
Then by [6], we can make G’ k-vertex-connected by
adding at most t(G’) — 1 new edges F'. So we can
obtain a (€, k)-connected graph G” + F', where G" de-
notes the resulting graph from splitting all remaining
edges incident to s such that all pairs are A-splittable.
From #(G’) < 2¢+ 1, the number of all added Ldges to
G is at most [a(G)/2] + 2.

Theorem 3.1 For a multigraph G with k(G) > k — 1,
G can be made (¢, k)-connected by adding at most v(G) +
20 new edges in polynomial time, where v(G) = max{[

a(G)/2), B(G)}- a]
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