Augmenting a (k-1)-Vertex-Connected Multigraph to an ℓ -Edge-Connected and k-Vertex-Connected Multigraph

02004044 Kyoto University 01403794 Kyoto University 01001374 Kyoto University

* ISHII Toshimasa NAGAMOCHI Hiroshi IBARAKI Toshihide

1 Introduction

Let G = (V, E) stand for an undirected multigraph with a set V of vertices and a set E of edges. The connectivity augmentation problem has been extensively studied as an important problem in the network design problem.

The local edge-connectivity $\lambda_G(x,y)$ for two vertices $x,y\in V$ is defined to be the minimum size of a cut in G that separates x and y (i.e., x and y belong to different sides of X and V-X), or equivalently the maximum number of edge-disjoint path between x and y. The local vertex-connectivity $\kappa_G(x,y)$ for two vertices $x,y\in V$ is defined to be the number of internally-disjoint paths between x and y in G. For a given integer ℓ (resp., k), we call G ℓ -edge-connected (resp., k-vertex-connected) if $\lambda_G(x,y) \geq \ell$ (resp., $\kappa_G(x,y) \geq k$) holds for every $x,y\in V$.

In this paper, we consider the problem of augmenting the edge-connectivity and the vertex-connectivity of a given graph G simultaneously by adding the smallest number of new edges. For two given integers ℓ and k, we say that Gis (ℓ, k) -connected if G is ℓ -edge-connected and k-vertexconnected. Given a multigraph G = (V, E), and two integers ℓ and k, the edge- and vertex-connectivity augmentation problem, denoted by EVAP (ℓ, k) , asks to augment G by adding the smallest number of new edges to G so that the resulting graph G' becomes (ℓ, k) -connected. Recently, the authors proved that EVAP $(\ell, 2)$ can be solved in $O((nm + n^2 \log n) \log n)$ time [2], and that EVAP(ℓ , 3) can be solved in polynomial time (in particular, $O(n^4)$ time if an input graph is 2-vertex-connected) for any fixed integer ℓ [3, 4]. In this paper, we show that if an input graph G is (k-1)-vertex-connected $(k \ge 4)$, then G can be made ℓ edge-connected and k-vertex-connected by adding at most 2ℓ surplus edges over the optimum in polynomial time.

2 Definitions

For a subset $V' \subseteq V$ in G, G - V' denotes the subgraph induced by V - V'. For an edge set F with $F \cap E = \emptyset$, we denote $G = (V, E \cup F)$ by G + F. An edge with end vertices u and v is denoted by (u, v). A partition X_1, \dots, X_t of vertex set V means a family of nonempty disjoint subsets of V whose union is V, and a subpartition of V means a partition of a subset of V. For two disjoint subsets of

vertices $X, Y \subset V$, we denote by $E_G(X,Y)$ the set of edges, one of whose end vertices is in X and the other is in Y, and also denote $c_G(X,Y) = |E_G(X,Y)|$. A cut is defined as a subset X of V with $\emptyset \neq X \neq V$, and the size of a cut X is denoted by $c_G(X, V - X)$, which may also be written as $c_G(X)$. A cut with the minimum size is called a minimum cut, and its size, denoted by $\lambda(G)$, is called the edge-connectivity of G. For a subset X of V, $\{v \in V - X \mid (u, v) \in E \text{ for some } u \in X\}$ is called the neighbor set of X, denoted by $\Gamma_G(X)$. Let p(G) denote the number of components in G. A disconnecting set of G is defined as a cut S of V such that p(G - S) > p(G)holds and no $S' \subset S$ has this property. If G is connected and does not contain K_n , then a disconnecting set of the minimum size is called a minimum disconnecting set, and its size, denoted by $\kappa(G)$, is called the vertex-connectivity of G. On the other hand, we define $\kappa(G) = 0$ if G is not connected, and $\kappa(G) = n-1$ if G is connected and contains the complete graph K_n . For a vertex set S in G, we call the components in G-S the S-components, and denote the family of all S-components by C(G-S).

A cut $T \subset V$ is called *tight* if $\Gamma_G(T)$ is a minimum disconnecting set in G. A tight set D is called *minimal* if no proper subset D' of D is tight. We denote the maximum number of pairwise disjoint minimal tight sets by t(G).

2.1 Edge-Splitting

Given a multigraph G=(V,E), a designated vertex $s\in V$, vertices $u,v\in \Gamma_G(s)$ (possibly u=v) and a nonnegative integer $\delta\leq \min\{c_G(s,u),c_G(s,v)\}$, we construct graph G'=(V,E') from G by deleting δ edges from $E_G(s,u)$ and $E_G(s,v)$, respectively, and adding new δ edges to $E_G(u,v)$. We say that G' is obtained from G by splitting (s,u) and (s,v) by size δ .

Given a multigraph G=(V,E) and $s\in V$ with $\lambda_G(x,y)\geq \ell$ for all pairs $x,y\in V-s$, a pair $\{(s,u),(s,v)\}$ of two edges in $E_G(s)$ is called λ -splittable, if the multigraph G' resulting from splitting edges (s,u) and (s,v) satisfies $\lambda_{G'}(x,y)\geq \ell$ for all pairs $x,y\in V-s$. It is known in [5] that there is always a λ -splittable pair two edges incident to s, if $c_G(s)$ is even and $\ell\geq 2$ holds.

Given a multigraph G = (V, E) and $s \in V$ with $|V| \ge$

k+2 and $\kappa_G(x,y)\geq k$ for all pairs $x,y\in V-s$, a pair $\{(s,u),(s,v)\}$ of two edges in $E_G(s)$ is called κ -splittable, if the multigraph G' resulting from splitting edges (s,u) and (s,v) satisfies $\kappa_{G'}(x,y)\geq k$ for all pairs $x,y\in V-s$. It is known in [1] that there is always a κ -splittable pair $\{(s,u),(s,v)\}$, if one of the following holds; (i) $\kappa(G-s)=k-1\geq 1$ and $t(G-s)\geq \max\{2k-2,k+2\}$ hold and G-s has an S-component T with $p((G-s)-S)\geq 3$ and $|\Gamma_G(s)\cap T|\geq 2$ for some disconnecting set S in G-s, (ii) if $\kappa(G-s)=k-1\geq 1$ and $t(G-s)\geq k+2$ hold and G-s has a disconnecting set S with p((G-s)-S)=2.

3 An Algorithm for EVAP (ℓ, k)

We now present a polynomial time algorithm for EVAP(ℓ,k) for a (k-1)-vertex-connected input multigraph. Let $\beta(G) \equiv \max\{p(G-S) \mid S \text{ is a disconnecting set in } G\}$. To make a graph G (ℓ,k)-connected, it is necessary to add at least $\ell-c_G(X)$ edges to $E_G(X,V-X)$ for each cut X, to add at least $k-|\Gamma_G(X)|$ edges to $E_G(X,V-X)$ for each cut X with $V-X-\Gamma_G(X)\neq\emptyset$, and to add at least p(G-S)-1 edges to connect components of G-S for each disconnecting set S in G.

Lower Bound:
$$\gamma(G) \equiv \max\{\lceil \alpha(G)/2 \rceil, \beta(G) - 1\}$$
, where $\alpha(G) = \max\left\{\sum_{i=1}^{p} (\ell - c_G(X_i)) + \sum_{i=p+1}^{q} (k - |\Gamma_G(X_i)|)\right\}$ and the max is taken over all subpartitions $\{X_1, \dots, X_p, X_{p+1}, \dots, X_q\}$ of V such that $q \geq p \geq 0$ and $V - X_i - \Gamma_G(X_i) \neq \emptyset$, $i = p+1, \dots, q$.

The sketch of our algorithm for solving the EVAP (ℓ, k) for a (k-1)-vertex-connected multigraph, denoted by Algorithm EV-AUG, is given as follows.

Algorithm EV-AUG

Input: An undirected multigraph G = (V, E) with $|V| \ge k + 1$, $\kappa(G) = k - 1$, and an integer $\ell \ge k \ge 4$.

Output: A set of new edges F with $|F| \le opt(G) + 2\ell$ such that $G^* = G + F$ satisfies $\lambda(G^*) \ge \ell$ and $\kappa(G^*) \ge k$.

Step I. (Adding vertex s and associated edges): If $t(G) \leq 2\ell + 1$ holds, then after adding a new vertex s, we can add a set F_1 of new edges between s and V so that $|F_1| \leq \alpha(G)$ and the resulting graph $G_1 = (V \cup \{s\}, E \cup F_1)$ satisfies $c_{G_1}(X) \geq \ell$ for all cuts $X \subset V$. After setting $G' := G_1$ and $\overline{G'} := G_1 - s$, go to Step III. If $t(G) \geq 2\ell + 2$ holds, then after adding a new vertex s, we can add a set F_1 of new edges between s and V so that $|F_1| = \alpha(G)$ and the resulting graph $G_1 = (V \cup \{s\}, E \cup F_1)$ satisfies $c_{G_1}(X) \geq \ell$ for all cuts $X \subset V$, $|\Gamma_G(X)| \geq k$ for all cuts $X \subset V$ with $V - X - \Gamma_{G_1}(X) \neq \emptyset$. After setting $G' := G_1$ and $\overline{G'} := G_1 - s$, go to Step II.

Step II. (Edge-splitting): While $t(\overline{G'}) \ge 2\ell + 2$ holds, repeat the following procedure.

If $\beta(\overline{G'}) - 1 < \lceil t(\overline{G'})/2 \rceil$, then we split a λ -splittable and κ -splittable pair (s, u) and (s, v) which decreases $t(\overline{G'})$ by at least one. Set $G' := G' - \{(s, u), (s, v)\} + \{(u, v)\}, \overline{G'} := G' - s$, and go to Step II.

If $\beta(\overline{G'}) - 1 \geq \lceil t(\overline{G'})/2 \rceil$, then execute the following procedure. If there is a λ -splittable and κ -splittable pair (s,u) and (s,v) which decreases $\beta(\overline{G'})$ by one, after at most one undoing an edge-splitting and at most one replacing one edge incident to s, then we split (s,u) and (s,v), set $G' := G' - \{(s,u),(s,v)\} + \{(u,v)\}$, $\overline{G'} := G' - s$, and go to Step II. Otherwise we can add more $\beta(G) - 1 - \lceil \alpha(G)/2 \rceil$ new edges to obtain a (ℓ,k) -connected graph, after splitting all remaining edges incident to s such that all pairs are λ -splittable (according to [5]). Output a set of all added edges to G as an optimal solution.

Step III. (Edge augmentation): Now $t(\overline{G'}) \leq 2\ell + 1$ holds and G' satisfies $c_{G'}(X) \geq \ell$ for all cuts $X \subset V$. Then by [6], we can make G' k-vertex-connected by adding at most $t(\overline{G'}) - 1$ new edges F'. So we can obtain a (ℓ, k) -connected graph G'' + F', where G'' denotes the resulting graph from splitting all remaining edges incident to s such that all pairs are λ -splittable. From $t(\overline{G'}) \leq 2\ell + 1$, the number of all added edges to G is at most $\lceil \alpha(G)/2 \rceil + 2\ell$.

Theorem 3.1 For a multigraph G with $\kappa(G) \geq k-1$, G can be made (ℓ, k) -connected by adding at most $\gamma(G) + 2\ell$ new edges in polynomial time, where $\gamma(G) = \max\{\lceil \alpha(G)/2\rceil, \beta(G)\}$.

References

- J. Cherian and R. Thurimella, Fast algorithms for kshredders and k-node connectivity augmentation, Proceedings 28th ACM Symposium on Theory of Computing, 1996, pp. 37-46.
- [2] T. Ishii, H. Nagamochi, and T. Ibaraki, Augmenting edge-connectivity and vertex-connectivity simultaneously, LNCS, Springer-Verlag, 8th ISAAC 1997, pp. 102-111.
- [3] T. Ishii, H. Nagamochi, and T. Ibaraki, Optimal augmentation to make a graph k-edge-connected and triconnected, Proc. of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 280-289.
- [4] T. Ishii, H. Nagamochi and T. Ibaraki, k-edge and 3-vertex connectivity augmentation in an arbitrary multi-graph, Lecture Notes in Computer Science 1533, Springer-Verlag, 9th ISAAC, 1998, pp. 159-168.
- [5] L. Lovász, Combinatorial Problems and Exercises, North-Holland, 1979.
- [6] W. Mader, Ecken vom Grad n in Minimalen n-fach zusammenhängenden Graphen, Arch. Math. Vol.23, 1972, pp. 219-224.