1—F—9 19994ERER A RL— 3 3 v X -) —F2a
KEMAERRS

Two Algorithms for Computing Power
Indices of All Players Efficiently

Takeaki UNO *

Abstract: For a weighted majority game with n players, several power indices have been
proposed. Two in particular, the Banzhaf index and the Shapley-Shubik index are well
studied. Two dynamic programming algorithms had been proposed for computing the exact.
values of these indices of a player in O(ng) time, and O(n?q) time. Here n is the number of
players, and ¢ is the quote. In this paper, we propose two algorithms for efficiently computing
thesc indices for all players simultaneously. Our algorithms are obtained by modifying those
dynamic programming algorithm. Our algorithms run in O(ng) time, and O(n%qlogn) time,
thus our algorithms are faster than existing algorithms.

1 Introduction

Let {1,...,n} be a set of players, and {w;} be the weight of p;. Consider a weighled magjority
game in which w; is the weight of the vote of players. For each proposal, each player votes
"ves” or "no”. If the sum of the weights of the ”yes” votes is larger than some constant -
g, then the proposal is accepted. Constant ¢ is called a quote. Each player has a distinct
weight, for his vote, the so the cffect of each player on the voting is different. An index is
needed to indicate the intensity of these effects.

Power indices are considered from the above reason. Especially, the Banzhaf index (Bz
index) and the Shapley-Shubik index (SS index) are well studied. These indices are defined
as follows. A coalition is a subset {py, ..., pk} of the player set. For a coalition C, if its weight
w(C) = Y;ec w; is larger than ¢, then C is said to be winning. Otherwise C is said to be
losing. Let B; be the number of winning coalitions C such that i € C and C'\ {i} is losing.
We define S; to be the number of permutations p = {py, ..., p, } satisfying that {p;,...,pc} is
winning, and {pi,...,px_1} is lose, where p; = i. B; and S; can be considered to be indices,
because if either is large, we can consider the power of player ¢ to be strong. From this
observation, the Bz index of player i is defined as B;/2", and the SS index of player i is
defined as S;/n!.

In general, these two indices are difficult to compute exactly if the number of players
is large, because a naive algorithm takes O(2") time to compute the Bz index, and O(n!)

*Department of Industrial Engineering and Management, Tokyo Institute of Technology, 2-12-1 Oh-
okayama, Meguro-ku, Tokyo 152-8552, Japan. uno@me.titech.ac. jp

—150—

time to compute the SS index. If all the weights of the players are integer, these indices
are computed in short time by dynamic programming (DP) algorithms [1, 2]. For a player,
They take O(ng) time to compute the Bz index, and O(n?q) time to compute the SS index.
These algorithms are considerably faster than the naive algorithm if n is large.

By the way, how long does it take to obtain these indices for all players by using these
algorithms? These DP algorithms take O(n?g) time for the Bz index, and O(n?q) time for
the SS index. DPs solved to obtain the indices are almost same, in which only one player
differs. They thus may include many unnecessary operations: In this paper, we propose
two algorithms for computing the Bz and the SS indices for all players simultaneously. Each
removes unnecessary operations from the naive computation. In the next section, we describe
the DP algorithm for computing the Bz index, and our more efficient version. In the third -
section, we describe the DP algorithm for computing the SS index, and our more efficient _
version.

2 Computing Banzhaf Index

In thls section, we first describe the algorithm for computing the Bz index by solving a
dynamic programming (DP). Without loss of generality, we assume that we compute the Bz
index of player n. Let di(j) be the number of coalitions C C {1, .., k} satisfying w(c) = j.
For k = 0, we define 'do(0) = 1, and do(j) = O for any j # 0. As a result, dj satisfies the
following equation if k > 0. ‘

d() dk 1()+dk I(J—wk)

We define di(j) = 0 if j < 0. By using this equation, dr(') can be computed if we have
dr-1(j) for all 0 > j > ¢. It takes O(q) time. By computing di from 1 to h, we can obtain
dn—1 in O(gn) time. Note that Bi =¥ w1 Gne 1(9).

By using this idea, we can construct an algorithm for computing the Bz index of each
player. Let er(j) be the number of coalitions C C {k,...,n} satisfying w(C) = j. For
k = n+ 1, we define e,41(0) = 1 and e,4,(j) = 0 for any j # O. Then, e satisfies the
following equation if k£ < n.

ex(J) = ex+1(J) + ex41(J — wi)

We define ex(j) = 0if j < 0 ; e, can be computed in the same way as di.

By using d; and e, we compute the Bz index for player i:. B; is equal to the number
of coalitions C C {i,...,1 — 1,7 + 1,...,n} with ¢ — w; < w(C) < ¢. Any coalition C €
{i,....,i—1,i+1,...,n} is equal to C, UCs such that Cy C {3, i— 1} and Cy C {i+1,...,n}.
B; is therefore the number of pairs of coalitions C, and C; satisfying ¢ —w; < w(C,UC,) < q.
The number of such pairs of C} and C, can be computed by using d; and e,. For a constant
!, a’pair of coalitions C; C {4,...,i — 1} with w(Cy) =1 and Cp C {i +1,...,n} satisfies the

—151—

1999 AR RV =Y a vy X - UH—FE£K
KENRERE

condition
q—w; <w(CUCy) <gq

if ¢ — w; — | < w(C,) < ¢ — . The number of coalitions satisfying the condition is

q—1

Bi=diy()x Y en())

J=g¢—~l-wi+1

We thus have
q q—!

- Bi=) dia()x Y. ein())

1=0 j=q—l-wi+1

To compute Zg;;_,_wiH ei+1(j), we define z¢(h) = Z?:o ex(j), from which we have

g1
> eini(d) = zin(g—1) — zipa(g — 1 — w;)
j=q—-l-w;+1
and .
Bi=) di(l) X (zir1(q — 1) — zira(g — 1 — wi)).
=0

Since we can compute z; from e, in O(g) time. we can compute B; in O(q) time. Therefore,
we can compute the Bz index for all players in O(ng) time.

3 Computing Shapley-Shubik index

In this section, we describe a dynamic programming used to compute the SS index, and our
algorithm for computing the SS index for all players. Let di(j) be the number of coalitions
C such that w(C) = j and |C| = s. For k = 0, we define dj(j) = 1if j = 0 and s = 0,
otherwise d(7) = 0. For a coalition C, |C|! x (n — 1 — |C|)! is the number of permutations
of {p1,-..,pu} satisfying {pi,...,pc} = C;px = 4. S; is thus the sum of |C|! x (n — 1 — |C|)!
over all coalition C satisfying ¢ — w; < w(C) < q. Therefore, we have

q

S = Z Clix(n-1-1C)x 3 d&l).

Jj=q-w;+1

We can also compute di(j) by solving a DP, since dj, satisfies the following condition.
di(5) = di_,(§) + dZZ3 (5 — wi)

We define d§(j) = 0 if j < 0 holds. From this equation, we can compute di in a way similar
to the previous section. Since at most O(ng) iterations occur in each phase of the DP, the
total time of the DP is O(n?q). |

~ Next, we describe a way to compute the SS index for all players simultaneously. The way
described in the previous section does not work well for the SS index, since time to compute
a SS index is O(n?q) for a player. In our algorithm, we thus use another way to compute. To

—152—

solve the problem of computing the SS index for all the players, we divide the problem into
two subproblems and solves the subproblems recursively. The algorithm inputs dy and the
sequence of players {1,...,n}. Let n' be |n/2]. The algorithm first computes d,y in O(gn’)
time. It then generates a recursive call to compute SS index for players {n' +1,...,n}. The
~ recursive call inputs d, as dp and {n'+1,...,n} as the sequence of players. After computing
the SS index for players {n' +1,...,n}, the algorithm changes the sequence of players from
{1,..,n} to {n,..., 1} by resetting the player weights: w, = W, ws = Wn_1, ..., wn = w;. It
then computes d,_, by solving a DP in O((n — n')q) time, and generates a recursive call
to compute the SS index for players {1,...,n’}. The recursive call inputs d,_, as dy and
{n' +1,...,n} as the sequence of players.
The time complexity of the algorithm is analyzed in the same way as the analyzing way
of a merge sort. We can see that the depth of the recursion is O(logn), and The sum of
“computation time of the iterations in the same depth of the recursion is O(ng). Hence we
obtain that the algorithm terminates in O(nglogn) time.

Acknowledgement .
We thank Tomomi Matsui of Tokyo University for his advice and collaboration.

References

[1] W.F.Lucas, “Measuring Power in Weighted Voting Systems,” in S. J. Brams, W. F.
Lucas and P. D. Straffin Eds., it Political and related models, Springer-Verlag, pp.183-
238 (1983). ‘

(2] S. J. Brams and P. J. Affuso, “Power and size: a new paradoz,” mimeographed paper
(1975).

