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1. INTRODUCTION

An attempt to solve the optimal maintenance problem
on the graph was made first by Bergman {1]. That is, he
proposed the graphical method on the scaled total time
on test (TTT) curve to determine the optimal age re-
placement time which minimizes the expected cost per
unit time in the steady-state. The merit of this method
for the analytical approach has been considered to give
a better insight for the corresponding statistical infer-
ence problem. In fact, Bergman and Klefsjo [2] and Dohi
et al. [3] analyzed several non-parametric maintenance
problems applying the scaled TTT concept. Recently,
Dohi et al. [4] developed a new method based on the
Lorenz curve to solve the different kind of maintenance
problem.

However, it should be noted that the computational
merit for the graphical method has not been known for
the simple maintenance problems above. In other words,
the graphical method is essentially equivalent to the ana-
lytical one if our interest is to calculate the optimal main-
tenance policy under the complete knowledge of statisti-
cal information. In this paper, through a repair-limit
replacement problem with discounting, we show that the
graphical method can characterize the optimal mainte-
nance policy ecasily on the wider class of policy space
than the analytical one. This implies that the graphi-
cal method is the unified approach to derive the optimal
maintenance policy and can characterize it under weaker

assumptions.,

2. MODEL DESCRIPTION

Consider a single unit svstem. where cach spare is pro-
vided only by an order after a lead time L (> 0) and cach
failed unit is repairable. The original unit begins operat-
ing at time 0. The lifetime for each unit obevs the gen-
eral distribution function F(t) with density f(t) and finite
1/A (> 0). When the unit has failed, the decision maker
has to select repair or replacement. Suppose that the
decision maker has a subjective probability distribution

function on the repair-completion time G(t) with density
g(t) and finite mean 1/u (> 0). If he or she estimates that
the repair is completed up to the time limit ¢o € [0, 00),
then the repair is immediately started at the failure time.
It is assumed that the unit once repaired is as good as
new. However, if he or she estimates that the repair time
is greater than to, then the failed unit is scrapped at the
failure time, the spare unit is ordered immediately and
delivered after the lead time L. The time required for re-
placement is negiigiblc for convenience. The cycle repeats
itself again and again.

Let us define a discount factor 8 (> 0). In addition, we
define the Laplace transforms of densities f(t) and g(t) by
L{f(B)} and L{g(B8)} with 8. Also, the function G(-) is
assumed to have an inverse function, i.e. G~'(-), and to
be absolutely continuous and strictly increasing. Without
any loss of gencrality, we assume G(0) = F(0) = 0 and
lim; 00 G(t) = limy o0 F'(t) = 1. The cost components
are the following;

k. (> 0): repair cost per unit time
ks (> 0): shortage cost per unit time
¢ (> 0): ordering cost per unit spare

Let us formulate the expected total discounted cost
over an infinite time horizon. The expected total dis-

counted cost for one cycle is

Ev-(to) = L{f(H)} (k-,.+k,,)/' “«‘-”E(r)dt
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where, in general, v(*) = 1 — «:(-). The present value of
a unit cost during one cycle is

am

é(tg):ll{f(ﬁ)}[/ a"“'dc(t)+e'-“-’c"(t0)]. (2)
0

Since the expected total discounted cost over an infi-
nite time horizon becomes V(to) = ) 7oy Bv (ta)d (to) =
Ev(to)/6(te), the problem is to derive the optimal



repair-time limit t§ € [0,00) which satisfies V(t5) =

min05t0<°° V(to)

Lemma 2.1: The function V (fo) is strictly convex in to
if (k- + kg)/B > V(to) for all to € [0, 00).

Theorem 2.2: Suppose that (k. + ks)/8 > V(to) for all
to € [0,00). Define the nonlinear function; '

: _ »—Btg L .
q(to) = {(k' +k’)2 =) —kf/, e Py
P 38(t0) ~ (™7 = PO By (t0). (3)

(i) If ¢(0) < 0 and g(co) > 0, then there exists a finite
and unique optimal repair-time limit- ¢ (0 < t5 <
oo) which satisfies ¢(tg) = 0.

(ii) If q(0) > 0, then the function V(o) is strictly in-

creasing and the optimal repair-time limit is {5 =

0.

(iii) If g(oo) < 0, then the function V(o) is strictly de-
creasing and the optimal repair-time limit is £ —

00.

3. GEOMETRICAL APPROACH

Putting p = G(to) € [0,1], define £ (p) = ¢a(p)/va(1),

where
wi) = [ e ac). )
0

Then we have the following useful result.

Theorem 3.1:

(i) If cexp{—pBL} + k. (exp{—-0L} = 1)/ﬂ > 0, then the
" problem is reduced to
£s(p) + B,

max ;| ————2 (5)
o<p<t p+Ba

where
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(ii) If cexp{=AL} + k,(exp{-/L} = 1)/8 < 0. then

min M (9)

0<p<i Y4 + BJ:
(iii) If cexp{—pBL} + kr((-zxp{—/JL} —1)/8 =0, then

ol<n,jl<11 : %f}—}l) —&5(p). (10)

Remark 3.2: From Lemma 2.1, the condition (k. +
ks)/B > V(to) for convexity is equivalent to the following

inequalities;
Ji<ce Pl —k.(1-ePL)/p < Ja, (11)
where
no= ek /OL eP3dy + ce oL 4 B ; i
x(+ e} - BT @)+ )
< 0 | (12)
5= 22 - g o) > 0. (13)

Remark 3.3: Define the empirical distribution of the
repair time as follows.

s =‘ i/n forz; <z < Ty,
Gin(w) = { 1 for z, <z, (19)

where, ¢ = 0,1,2,...
parametric estimator of the function £;3(p);

,n— 1. Then we can obtain a non-
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Hence, replacing £s(p) and p by &, and i/n, respectively,
in Theorem 3.1, an estimator of the optimal repair-time
limit which minimizes the expected total discounted cost
over an infinite time horizon can be calculated on the two

dimensional space R>.
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