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1. Introduction

This paper is concerned with minimal cost rebalancing
problem under concave transaction costs and minimal
transaction unit (MTU) constraints.

Recently, we proposed a branch and bound algo-
rithm for solving a concave cost portfolio optimization
problem under the mean-absolute deviation framework
[3]. We used a piecewise linear underestimating func-
tion for the concave cost function and solved the re-
sulting linear subproblems by a branch and bound
method using a well-designed problem reduction tech-
nique. We showed in [3] that this algorithm generates
a good solution in a very efficient manner.

Here, we formulate the rebalancing problem as the
piecewise-concave cost minimization problem and ap-
ply the same branch and bound algorithm using a
piecewise linear convex underestimation strategy for
calculating a optimal solution. We will extend this al-
gorithm to even more difficult class of problem where
the amount of transaction is constrained to be the
integer multiple of minimal transaction units. The’
problem thus becomes a concave minimization prob-
lem with integer constraints on the variables.

2. Minimal Cost Rebalancing under Con-
cave Transaction Costs
Let x° be the portfolio at hand and assume that an
investor wants to rebalance the portfolio in such a way
that the new portfolio x satisfies the condition that its
expected rate of return E[R(x)] is greater than some
constant p and that the risk is W[R(x)] is smaller than
some constant w. '

As in the mean absolute deviation (MAD) model
[2,3], we will employ the absolute deviation as the mea-
sure of risk in this rebalancing problem.
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The expected return is given by
n

E[R(z)] = r(z) = )_r;z;.
Jj=1
Let S be an investable set. Then the minimum cost
rebalancing problem can be formulated as follows.
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minimize c¢(z)

subject to E[R(z)] > p,
W[R(z)] < w,
x €S,

where ¢(x) is a concave transaction cost associated
with the purchase/sale of stock S and
S = {$|0$ Z; Saja j= 1)"'1”}'
Let us introduce a new set of variables,
v=z-z°
Then the above problem can be represented as follows:
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where V is the set of feasible v's corresponding to S,
and c;(v;) is the cost associated with purchasing v;
units (if v; > 0) and selling v; units (if v; < 0) of j
th asset. Let us assume again that ¢;(v;) is piecewise
concave and that ¢;(0) = 0 for all j.

We construct a branch and bound algorithm which

will be explained in Section 3. Let (H}) be a subprob-
lem :

n
minimize z ¢;(vj)
i=1
subject to (v, z) € G,
ﬂJk <wv; < a;?'.

(Pr)

We will approximate the function c;(v;) in the interval

[a%, 8%] by a piecewise-linear convex underestimating

function cf(vj) and define a relaxed subproblem :

n
minimize Z cf (vj)
(Qr J=1
subject to (v, 2) € G,
Bf <vj <af.
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which can be reduced to a linear programming prob-
lem by using a standard method.

3. A Branch and Bound Algorlthm
1° P={(R)}, f 400, k 0

2° If P= {q5} then goto 9°; Otherwnse goto 3°.

3° Choose a problem (P) € P:

n

() minimize ._f(v) = ; cj(vj)
subject to (v,z) € G, B* <v <o,
P = P\{(R)}. |

4° Let c" (vj) be a linear underestlmatmg functxon of
cj(v;) over the interval ﬁ" <w < aJ, G=1,---,n)
and define a linear programming problem '

= Zcf(vj)

subject to (v,z) € G, B* <wv <ak.

minimize g (v)

(Qk)

If (Q4) is infeasible then go to 2°. Otherwise let v* be
an optimal solution of (Qy).

If |f(v*) — gx(v*)] > € then goto 8°.
fi = f(v").

5° If fr > f then goto 7°; Otherwise goto 6°.

Otherwise let

6° If f=fo; 0= #* and eliminate all the subprob-
lems (P;) for which g,( v*) > f.

7° If g (v*) > f then goto 2°. Otherwise goto 8°.

8° Let )
cs(v¥) — K (v¥) = max{c;(v}) - ck(v])},

S = Skn{v| Bk < v, < (B + ak)/2},
Sivz = Sen{v|(Bf +a5)/2< v <af}

and define two subproblems :

(Pi41)
(Piy2)

P =PU{P41,Pi+2},k =k +1 and goto 3°.

maximize {f(v)| (v,2) € G, v € St }.
maximize {f(v)| (v,2) € G, v € Sj42}.

9° Stop : ¥ is an € optimal solution of (Fo).

Theorem 3.1 : & converges to an € - optimal solution
of (Py) as k — 0.

Proof : See e.g. [1, 4] O

To accelerate convergence, we may replace the blsec-
tion scheme by the w - subdivision scheme [1], in which
the interval [8%,a¥] is divided into two subintervals

[B%,vF] and [ vk, af] where v¥ is the s th component
of the optimal solution v* of (Q). This subdivision
scheme usually accelerate convergence, though it is not -
theoretically guaranteed.

4. Cbmputa‘tionél Ex-périmlents‘ '

We conducted numerical tests of the algorithm pro-

posed in this paper using nionth]y data of 200 stocks

chosen from NIKKEI 225 Index. We used the breadth
first rule for choosing subproblems in Step 3° of the
branch and bound Algorithm and w— subdivision strat-
egy throughout the.test. Also we choose ¢ = 1073
our computation. -We choose appropriate level of p
and w in view of the new efficient frontier calculated
by a new set of 36 monthly data.

As expected, the performance of the algorithm is
more or less the same as the that of portfolio con-
struction problem reported in [3]. This rebalancing
problem proves that an investor sells/buys a smaller
number of assets when the terminal risk is the same
as the original portfolio and the elapse of time is short
enough. However, it increases as the elapse of time
and the discrepancy of p and w from the original port-
folio increases.

(Computational results will be presented at the time
of presentation)

5. Conclusions

We showed in this paper that the portfolio rebalanc-
ing problem under concave transaction costs can be
solved in a practical amount of time. The success de-
pends upon the use of mean absolute deviation model,
elaboration of the classical branch and bound method
using w - subdivision strategy.

References

[1] Konno, H., Thach, P.T and Tuy, H., Optimization
on Low Rank Nonconvex Structures, Kluwer Aca-
demic Publishers, 1997.

[2] Konno, H. and Yamazaki, H., “Mean Absolute De-
viation Portfolio Optimization Model and Its Ap-
plication to Tokyo Stock Market”, Management
Science, 37, (1991), 519-531.

[3] Konno, H. and Wijayanayake, A., “Mean-Absolute

Deviation Portfolio Optimization Model under
Transaction Costs”, Department of IE and Man-
agement, Tokyo Institute of Technology, 1998.

[4] Tuy, H., Conver Analysis and Global Optimiza-
tion, Kluwer Academic Publishers, 1998.





