Maximization of the Ratio of Two Convex Quadratic Functions over a Polytope

02103210 東京工業大学 *後藤 順哉 GOTOH Jun-ya 01102370 東京工業大学 今野 浩 KONNO Hiroshi

1 Introduction

Lo&MacKinlay[4] formulate a portfolio selection problem in the form of a quadratic fractional problem with a few linear constraints. It is not easy to calculate a global optimal solution because it is not a concave-convex-type fractional programming problem. In this paper, we generalize their formulation and develop an algorithm for a nonconvex quadratic fractional problem, which includes Lo&MacKinlay's problem as a special case. The problem can be formulated as follows:

(P) maximize
$$f(x) \equiv \frac{x'Qx}{x'Px}$$

subject to $x \in X \subset R^n$,

where $P, Q: n \times n$ positive semi-definite matrices, X: a polytope.

We assume $x'Px > 0, \forall x \in X$. Under these assumptions, a well-known framework for nonlinear fractional programming problems addressed by Dinkelbach[1] is applicable to (P).

2 Basic Analysis

Let us start with the problem (P) when $X = \mathbb{R}^n$. The following proposition provides a geometric image of the objective function f(x).

PROPOSITION 1 (Gantmacher [2]): The maximum of f(x) with respect to $x \in R^n$ is given by the largest eigenvalue λ^* of the matrix $B \equiv P^{-1}Q$, and is attained by the eigenvector x^* associated with the largest eigenvalue of B.

Therefore, if the problem (P) has no constraint, it suffices to seek the maximal eigenvalue and corresponding eigenvector. However, a problem with constraints requires global optimization techniques.

Let us introduce a function, $F(x, \lambda), x \in X, \lambda \in R$ as follows:

$$F(x,\lambda) \equiv x'(Q-\lambda P)x$$

PROPOSITION 2 (Dinkelbach [1]) If there exists $\lambda^* > 0$ which satisfies the equation:

$$F(\mathbf{x}^*, \lambda^*) \equiv \max_{\mathbf{x} \in X} F(\mathbf{x}, \lambda^*) = 0,$$

then x^* is an optimal solution of (P).

In other words, the problem (P) is equivalent to the problem of finding λ satisfying the above condition.

PROPOSITION 3 Let P and Q be $n \times n$ positive definite matrices and let us denote $\lambda_{max} = \max f(x)$, $\lambda_{min} = \min f(x)$, respectively. Then the following statements hold:

$$\forall \lambda > \lambda_{max}$$
, $(Q - \lambda P)$ is negative definite, $\forall \lambda < \lambda_{min}$, $(Q - \lambda P)$ is positive definite, $\forall \lambda \in (\lambda_{min}, \lambda_{max})$, $(Q - \lambda P)$ is indefinite.

For simplicity, we denote

$$\pi(\lambda) \equiv \max_{x \in X} F(x, \lambda).$$

From Proposition 3, once λ is given, we must solve a nonconvex optimization problem, viz., $\pi(\lambda)$. In this paper, we apply a decomposition branch and bound method, rectangular subdivision algorithm, whose usefulness is proved by Phong et al.[5]. A symmetric matrix $Q - \lambda P$ can be transformed into the separable (d.c.) form by a standard decomposition technique, e.g.,

$$x'(Q-\lambda P)x \longrightarrow \sum_{i=1}^{l} c_i y_i^2 - \sum_{j=1}^{n-l} d_j z_j^2,$$

where $c_i > 0$, i = 1,...,l, $-d_j < 0$, j = 1,...,n-l are eigenvalues of $Q - \lambda P$.

Let $\Omega \in (y, z)$ be the polytope associated with X. We can easily obtain a rectangle S containing Ω :

$$S = \{(y, z) | L_i \leq y_i \leq U_i, i = 1, ..., l\}.$$

An overestimating function on S can be defined as

$$g(y,z) = \sum_{i=1}^{l} \phi_i(y_i) - \sum_{j=1}^{n-l} d_j z_j^2,$$

where

$$\phi_i(y_i) = c_i(U_i + L_i)y_i - c_iU_iL_i, \ i = 1, \dots, l$$

The maximization of g(y, z) over $\Omega \cap S$ which is a concave quadratic program gives an upperbound of the optimal value of F on $\Omega \cap S$ for fixed λ .

Let us remark that l is smaller when λ is larger. Clearly, $\pi(\lambda)$ is a decreasing convex function of $\lambda \in R$. Therefore, binary search or Newton's method can be applied to search λ such that $\pi(\lambda) = 0$. However, we apply the following more efficient procedure introduced by Ibaraki[3].

Interpolated BINARY (Ibaraki[3])

Step 1 Find λ' and λ'' such that $\pi(\lambda') > 0$ and $\pi(\lambda'') < 0$, and solve $\pi(\lambda')$ and $\pi(\lambda'')$. Let $\lambda^1 = \lambda'$ and $\lambda^2 = \lambda''$.

Step 2 Compute $\hat{\pi}(\lambda)$ defined below and its root $\bar{\lambda}$ satisfying $\hat{\pi}(\bar{\lambda}) = 0$. Solve $\pi(\bar{\lambda})$. If $|\pi(\bar{\lambda})| \leq \varepsilon$, halt. Otherwise go to Step 3.

Step 3 If $\pi(\bar{\lambda}) > 0$, let $\lambda^1 \equiv \bar{\lambda}$ and return to Step 2. Otherwise let $\lambda^u \equiv \bar{\lambda}$ and return to Step 2.

$$\hat{\pi}(\lambda) = \begin{cases} x^{u'}Px^{u}(\lambda^{u} - \lambda) + a(\lambda^{u} - \lambda)^{b} + \pi(\lambda^{u}), & \text{if } x^{u'}Px^{u} + \Delta\pi \neq 0, \\ x^{u'}Px^{u}(\lambda^{u} - \lambda) + \pi(\lambda^{u}), & \text{otherwise,} \end{cases}$$

$$a = -(x^{u'}Px^{u} + \Delta\pi)/(\lambda^{u} - \lambda^{l})^{b-1},$$

$$b = (x^{u'}Px^{u} - x^{l'}Px^{l})/(x^{u'}Px^{u} + \Delta\pi),$$

$$\Delta\pi = (\pi(\lambda^{u}) - \pi(\lambda^{l}))/(\lambda^{u} - \lambda^{l}).$$

where x^u the optimal solution of $\pi(\lambda^u)$.

3 An Algorithm for Solving (P)

The algorithm to be used in this paper is the following:

step 0 Let $\varepsilon > 0$ be some tolerance. Set k = 1.

step 1 Compute the largest eigenvalue λ_{max} and the corresponding eigenvector $\boldsymbol{x}(\lambda_{max})$ of $P^{-1}Q$. If $\boldsymbol{x}(\lambda_{max}) \in X$, terminate : $\boldsymbol{x}(\lambda_{max})$ is the optimal solution. Otherwise, goto step 2.

step 2 Solve the maximization problem $\pi(\lambda_{max})$ by an ordinary algorithm for convex program. If $\pi(\lambda_{max}) + \varepsilon > 0$ then terminate: the solution is ε -optimal, else select a λ_1 by the above procedure and goto step 3.

step 3 Decompose $Q - \lambda_k P$ into a diagonal matrix, which has eigenvalues of $Q - \lambda_k P$ as diagonal elements and transform $F(\boldsymbol{x},\lambda_k)$ into the equivalent separable form such as $\sum c_i y_i^2 - \sum d_j z_j^2$, where $c_i,d_j>0$, and transform also X into another polytope associating with $(\boldsymbol{y},\boldsymbol{z})\in R^n$. Solve it by rectangular subdivision algorithm[5]. If $|\pi(\lambda_k)|<\varepsilon$ then terminate with optimal solution. Otherwise, select λ_{k+1} by the Interpolated BINARY procedure and set $\lambda_k\leftarrow\lambda_{k+1}$ and goto step 3.

4 Example: Maximizing Predictability Portfolio

As an example, let us outline the formulation of the Maximizing Predictability Portfolio Problem, which is formulated by Lo&MacKinlay[4]. Assume that there

are n assets and let x be the investment weight for n assets. Let $R_t = (R_{t1}, \ldots, R_{tn})', t = 1, \ldots, T$ denote the vectors of historical return, and let $\bar{R}_t = (\bar{R}_{t1}, \ldots, \bar{R}_{tn})', t = 1, \ldots, T$ denote the vector of return data forecasted by a linear regression model.

Then, the predictability of the portfolio can be defined as follows :

$$\frac{Var\left[\mathbf{x}'(\bar{R}_t - E[R_t])\right]}{Var\left[\mathbf{x}'(R_t - E[R_t])\right]} \equiv \frac{\mathbf{x}'Q\mathbf{x}}{\mathbf{x}'P\mathbf{x}}.$$

where $Var[\cdot]$: variance operator.

Here, P, Q stand for variance-covariance matrices of observed return and forecasted return, respectively. In this case, the objective value is at most 1. Therefore, we know $\lambda_{max} \leq 1$.

As usual, portfolio has to satisfy some constraints. For example, we can define it as :

$$\{ x \mid \sum_{j=1}^{n} x_{j} = 1, \sum_{j=1}^{n} r_{j} x_{j} = \rho, 0 \le x \le u,$$

$$\sum_{j \in J_{k}} x_{j} \le C_{k}, k = 1, \dots, K \}.$$

where

ho : subjective expected return,

 r_j : expected return of asset j,

u: upper bound for the weight of investment,

 J_k : index set for some asset class,

 C_k : some constant less than 1.

In many cases, constraints for portfolio selection problem can be represented as a polytope, where the above algorithm is applicable. On the other hand, the scale of the problem varies case by case. Under practical environment, we need to solve $n=5\sim30$.

We will show computational results at the time of presentation.

References

- [1] Dinkelbach, W.(1967), "On Nonlinear Fractional Programming", Management Science, 13(7), 492-498.
- [2] Gantmacher, F.R. (1959), "The Theory of Matrices", Chelsea Pub. Co.
- [3] Ibaraki, T.(1983), "Parametric Approaches to Fractional Programs", Mathematical Programming, 26, 345-362.
- [4] Lo, A. and MacKinlay, C.(1997), "Maximizing Predictability in the Stock and Bond Markets", Macroeconomic Dynamics, 1, 102-134.
- [5] Phong, T.Q., An, L.T.H., Tao, P.D.(1995), "Decomposition branch and bound method for globally solving linearly constrained indefinite quadratic minimization problems", Operations Research Letters, 17, 215-220.