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1 Introduction

Lo&MacKinlay[4] formulate a portfolio selection
problem in the form of a quadratic fractional prob-
lem with a few linear constraints. It is not easy to
calculate a global optimal solution because it is not
a concave-convex-type fractional programming prob-
lem. In this paper, we generalize their formulation
and develop an algorithm for a nonconvex quadratic
fractional problem, which includes Lo&MacKinlay’s
problem as a special case. The problem can-be for-
mulated as follows :

(P)

_z'Qx
f(z) = +Pa

subject to x € X C R",

maximize

where P, () : n X n positive semi-definite matrices,
X : a polytope.

We assume z'Pxz > 0,Vx € X. Under these as-
sumptions, a well-known framework for nonlinear frac-
tional programming problems addressed by Dinkel-
bach[1] is applicable to (P).

2 Basic Analysis

Let us start with the problem (P) when X = R™
The following proposition provides a geometric image
of the objective function f(z).

PROPOSITION 1 (Gantmacher [2]) : The maz-
itmum of f(x) with respect to * € R™ is given by the
largest eigenvalue \* of the matriz B = P~'Q, and
is attained by the eigenvector =* associated with the
largest eigenvalue of B. :

Therefore, if the problem (P) has no constraint,
it suffices to seck the maximal eigenvalue and corre-
sponding eigenvector. However, a problem with con-
straints requires global optimization techniques.

Let us introduce a function, F(z,A),z € X, A€ R
as follows :

F(z,\) =z'(Q - AP)z.

PROPOSITION 2 (Dinkelbach [1]) If there ez-
ists A* > 0 which satisfies the equation :

F(m ,AY) ngea:\g(F(w,A }=0,

then * is an optimal solution of (P).
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In other words, the problem (P) is equivalent to the
problem of finding A satisfying the above condition.

PROPOSITION 3 Let P and Q be n x n positive
definite matrices and let us denote Ay = max f(zx),
Amin = min f(x), respectively. Then the following
statements hold :

VA > Aes, (@ — AP) is negative definite,
YA < Amin, (Q — AP) is positive definite,
YA € (Amin> Amaz), (@ — AP) is indefinite.

For simplicity, we denote

w(A) = max F(zx,)).
From Proposition 3, once A is given, we must solve a
nonconvex optimization problem, viz., 7(A). In this
paper, we apply a decomposition branch and bound
method, rectangular subdivision algorithm, whose use-
fulness is proved by Phong et al[5]. A symmetric
matrix ) — AP can be transformed into the separable
(d.c.) form by a standard decomposition technique,

e.g.,

1 n—1
Q- APz — Y eyt -y d;22

i=1 j=1
where ¢; > 0, i = 1,...,0, =d; < 0, j =
1,...,n — [ are eigenvalues of Q — AP.

Let © € (y, z) be the polytope associated with X.
We can easily obtain a rectangle S containing Q :

S={(y,2)|Li <y:i <U;, i=1,...,1}.

An overestimating function on S can be defined as

!

. n—~{
9y, 2) =Y ¢ily:) = D d;22,
1 - j=1

where
6i(yi) =ci(Ui + L)y —c;UiL;, i=1,... 1

The maximization of ¢g(y, z) over N S which is
a concave quadratic program gives an upperbound of
the optimal value of F on 2N S for fixed A.

Let us remark that [ is smaller when X is larger.
Clearly, m()) is a decreasing convex function of A € R.
Therefore, binary search or Newton’s method can be
applied to search A such that m(A) = 0. However,
we apply the following more efficient procedure in-
troduced by Ibaraki[3].



Interpolated BINARY (Ibaraki[3])

Step 1 Find A" and A" such that m(\") > 0 and
(M) < 0, and solve w(\') and w(\"). Let
A=) and A2 = ).

Step 2 Compute 7(A) defined below and its root b
satisfying #(A) = 0. Solve m(A). If x| < ¢,
halt. Otherwise go to Step 3.

Step 3 If 7()\) > 0, let /\1_ = X and return to Step 2.
Otherwise let A* = X and return to Step 2.
m“’Pz“(A‘ =) +a(X* = A + 7 (A",
7 if %Pz + A #£ 0,

() = ' Px™(A* — X) + m(A¥),
otherwise,
a = (:z:"'Pm +A7r)/()\” Ahye-t,
b = (z*'Pz* —z!' Pzl)/(z* Px* +A7r),
Ar = (m(A) =7 (A))/ (A = M),

where z* the optimal solution of w(A*).

3 . An Algorithm for Solving (P)

The algorithm to be used in this paper is the fol-
lowing :

step 0 Let € > 0 be some tolerance. Set k = 1.

step 1 Compute the largest eigenvalue A,,,. and the
corresponding eigenvector T (Anmqz) of P71Q. If
Z(Amaz) € X, terminate : (Anqz) is the opti-
mal solution. Otherwise, goto step 2.

step 2 Solve the maximization problem m(Anqz) by

" an ordinary algorithm for convex program. If

7T(Amaz) + € > 0 then terminate : the solution

is e-optimal, else select'a A; by the above pro-
cedure and goto step 3. '

3. Decompose Q — AP into a diagonal matrix,
which has eigenvalues of Q — AP as diagonal
elements and transform F(x, A;) into the equiv-
alent separable form such as Z c,y‘;2 ' Z d; 22
where ¢;,d; > 0, and transform also X into an-
other polytope associating with (y,z) € R™
- Solve it by rectangular subdivision algorithm|5).
If |m(At)| < € then terminate with optimal so-
lution. Otherwise, select ‘Ar4; by the Interpo-
lated BINARY procedure and set Ax — Ary
and goto step 3.

step

Example : Maximizing Pre-
dictability Portfolio

As an example, let us outline the formulation of

the Maximizing Predictability Portfolio Problem, which

is formulated by Lo&MacKinlay[4]. Assume that there

are n assets and let £ be the investment weight for
n-assets. Let Ry = (Ryy,...,Ren), t =1,...,T de-
note the vectors -of historical return, and let R, =
(Riy,... Ry, t=1,....T denote the vector of re-
turn data forecasted by a linear regression model.

Then, the predictability of the portfollo can be de-
fined as follows

Var [z'(R, - E[Ry)) ] :E’Qm
Var [z'(R. - E[R)))] _ @' Pz’

where Var[] : variance operator.

Here, P, () stand for variance-covariance matrices of
observed return and forecasted return, respectively.
In this case, the obJectlve value is at -most 1. There-
fore, we know An.r < 1. .

As usual, portfolio has to satisfy some constraints.
For example, we can define it as :

ij—l ZerJ—p,0<a:<u

Z.z-] SCA,k_l LK)
JE€J
where
p @ subjective expected return,
T expected return of asset j,
u upper bound for the weight of investment,
Ji index set for some asset class,
Cy some constant less than 1.

In many cases, -constraints for- portfolio selection
problem can be represented as a polytope, where the
above algorithm is applicable.. On the other hand,
the scale of the problem varies case by case. Under
practical environment, we need to solve n =-5 ~ 30.

We will show computational results at the time of
presentation.
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