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A logical interpretation for the eigenvalue method in AHP

. Why is a weight vector in AHP calculated by the eigenvalue method ?
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1 Introduction

Saaty [2] proposed to determine the relative
weights of items and/or alternatives (hereafter call
items only) in AHP by the eigenvalue method. The
eigenvalue method is widely used (e.g., [4]). How-
ever, no evident justification has been given for ap-
plying the eigenvalue method in a pairwise compar-
ison matrix A = (a;;). This paper presents a logical
justification for the eigenvalue method in AHP by
means of optimization/equilibrium models.

2 Self-evaluation and non-self-evaluation

For every element a;; of a pairwise comaprison
matrix A, we define the meaning of a;; by

(the value of the i** item)/(the value of the j™* item).

We assume that the values of all items are rep-
resented by positive real numbers. Then, it follows
that every ratio aj; is positive and a;; = 1 (4,5 =
1,...,n). From the definition of a;j, ai; = 1/aj;
(1 £i<mn, 1< j<n). Note that the validity of
Theorem 2 below is independent with the property
of ai; = l/aﬁ.

In our framework of AHP, every item is evalu-
ated by itself, and assigned a positive real number
(call self-evaluation value, w;).

Proposition 1  a;jw; represents the evaluation
value of the it item from the viewpoint of jth item
when the self-evaluation value of the j* item is
given by w;.

By averaging a;jw; over j # 1, we get:
> 7o1,j#i @ijwj/(n — 1). We define it the non-self-
evaluation value of the t* item.

We interpret a pairwise comparison matrix A
and an element a;; as a conversion table and a con-
version ratio from j to %, respectively. The non-self-
evaluation value of the i** item is the average of n—1
non-self-evaluation values which are converted into

the evaluation value of the ** item by others’ self-
evaluation values according to the conversion table

A.

3 Some equilibrium models for a pair-

wise comparison matrix

We can develop several indices of a discrepancy
between the self-evaluation value and the corre-
sponding non-self-evaluation value for each :. For
an index, the set of the discrepancies of all items
are denoted {v1,...,7n}. The distribution of these
discrepancies 7, .. ., n is then evaluated by several
criteria (e.g., minimum, maximum and variance).

Here we use the ratio of self and non-self-
evaluation values as the discrepancy index, that
is, 3 = (the i‘h-non-self-evaluvation value)

' (the ** self-evaluation value)
1,...,n, which we call i* overestimation rate. Note
that -; depends on w i.e., v;(w). We introduce two
evaluation criteria of the v;(w)s’ distribution:

for 1 =

filw) = max{m(w),...,m(w)}
fz('lU) = min{’Yl(w), R 771.(1”) }

From f;(w) and fo(w), we define

f3(w) = fi(w) — fa(w)

as a criterion of variation among vi,...,7¥n. Three
following optimization models may improve differ-
ences among n overestimation rates vyi,...,vn:

ming >0 f1 (wzz = n
i=1 Q1;Wj i=1 QpiW;4
{Ehi“’ z;:mf} (1

(n—=Dw; 7 (n—-1Dw,

minmax
w>0

maXqy>0 fZ(w) =

=1 a1W;5 > T=1 anjw; 2)
max min izl y..., =20
w>0 (n = 1)un (n — Vwn
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and

ming>o f3(w) = mingsg fi1(w) — fa(w) (3)

The models (1),(2), and (3) are based on the
following idea. By increasing/decreasing a self-
evaluation value w;, its corresponding overestima-
tion rate v;(w) is decreased/increased, and all other
overestimation rates are increased/decreased. We
can interpret the model (1) as the following aggre-
gation process : A set (vector) w of self-evaluation
values provides a difference among n overestimation
rates { 71,.-.,Vn }. Therefore, in the criterion of the
model (1), each item with the largest overestimation
rate is intended to increase its self-evaluation value;
simultaneously all other items are intended to de-
crease its self-evaluation value. By repeating this
aggregation process, we reach an equilibrium over-
estimation rate A (the derivation, see below) such
that A = Y1 = Y2 = +-+ = Y. In the same manner,
we can get the equilibria for the models (2) and (3).
Therefore these three optimization models can be
called equilibrium models.

4 Optimal solution

To show the equivalence between the eigenvector
with the principal eigenvalue of A and an optimal
solution for any equilibrium model, the following
famous theorem can be used:

Theorem 2 (Frobenius’s Theorem) Let Apax
be positive and the mazimum absolute value of
eigenvalues for an n X n matriz A whose element is
nonnegative. For every n-vector w whose element
15 positive,

an'=1 a1;Wj Z =1 2njWj <A
min w, ) .y wn <X Amax
n n
z._ aljwj ZA_ a,,jwj
=1 =1
Smax{——;———w yenes e .

Furthermore, if a matriz A is irreducible,

n n
Z_j:l @1 Wy Zj-_—.l GnjWj | A\
= Amax

max min e T .
. Z"l=1 a1;Wj Z’;l @njWj
= minmax{ ==—— ==L L
w>0 w1 Wn

For the n-identify matrix I, let A and G; be A — I
and the it" row vector of A, respectively. Then
every element of A is nonnegative and irreducible,
and the three equilibrium models (1), (2) and (3)
are rewritten as IJ;I)I% max{d w/wi,...,aw/wp},

m%cmin{&lw/wl,...,&nw/wn} ' and
w
mgr&{max{&lw/wl yer s Gpw/wn} — min{a w/w;
w

yo-oy@nw/wy}}, respectively. Let Amax and @ be
the principal eigenvalue of A and the corresponding
eigenvector. Since j\max is the simple root of the
characteristic equation of A, we get the following
two theorems:

Theorem 3 Every model (1),(2) and (3) has the
common optimal solution w. The optimal values of

(1) and (2) are Amax and that of (3) is 0.

Theorem 4 Let Apax and w be the principal
eigenvalue of A and the corresponding eigenvector,
respectively. Then

’\max -1

n—1
From Theorem 4 it follows that the consistency in-
dex C.1. = Apax — 1.

5 Concluding remarks

The current method can be interpreted as fol-
lows. The meaning of the eigenvalue method
is to obtain the equilibrium solution for the dif-
ference among all discrepancies between a self-
evaluation value and its corresponding non-self-
valuation value.

We can extend the current models (1), (2) and
(3) to the new models for AHP with incomplete
pairwise comparisons and get a different weight
vector from those of Harker method [1] and TS
method (3]. Thus, the current approach provides
some generalizations of these weighing methods
used in AHP.
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