Repeated Game of Criminal vs Police , I & II.

0/200424 坂口 実 (Minoru Sakaguchi)

Part I: Complete Information Case.

Abstract. Section 1. Formulation of the Game — Criminal us. Police $2 \sim 5$. Games $\Gamma_{n,n}(n)$, $\Gamma_{i,n}(n)$, $\Gamma_{i,n}(n)$, $\Gamma_{n,i}(n)$, resp. 6. Remarks and a Numerical Example.

Five theorems with proofs.

Part II: Incomplete Information Case

Abstract. Section 1. The Game of Criminal vs. Police under Incomplete Infor-

mation 2 One-Period Grames under Incomplete Intermation 3 Two-Period Game under Symmetric Information

Four theorems with proofs, and a numerical example.

The game is played as a repeated game over n periods between a potential criminal offender (hereafter called a criminal, or player I) and a law-enforcement authorities (hereafter called police, or player II) Being a repeated game implies that the fundamentals of the game are the same in each period. There are two pure strategies available in each period to player I: to commit a crime (C) and to act honestly (H). Similarly, player II has two pure strategies: to enforce the law (E) or to do nothing (N). If player I chooses H he carns his leagal income r > 0 (dollars). If he chooses

C, illegal income in amount of $\pi > 0$, in addition to his legal income r, may be earned. However if I's crime is detected and arrested by II, I is punished by having to pay a fine in amount of f > 0, and Inprisoned until the end of the game. When caught in prison, I earns no income at all, of course.

If player II chooses E, with a cost of c > 0 (dollars), he can (cannot) eatch 1's crime with probability $p(\bar{p}=1-p)$ in case that I commits crime that goes unpunished, a loss of 1>0 is inflicted upon society.

So a single stage of this game has the game tree as shown by Figure 1, and is represented by a bimatrix game with payoff bimatrix (1)

We assume that C < pl <u>i.e.</u>the strategy E for player II has a positive merit of choosing. This condition is very important as is seen in the proofs of the subsequent

We shall disacuss the n-stage game, where player I wants to commit crime at most k of n periods, and player II attempts to prevent I's illegal act by taking enforcement action at most m times during n periods. After each period is over, the outcome in that period becomes known to both players. The total payoff during n periods is the sum of the payoffs on each period. We assume that all of the above information is known to both players.

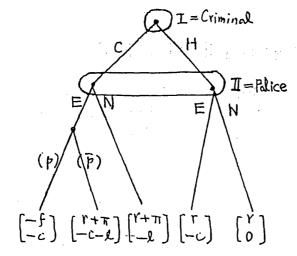


Figure 1. Game tree of a single stage

C: commit a crime

E: law-enforcement

N: do nothing

p: prob of being punished

f: amount of fine

r(T): leagal (illeagal) income to I (if unpunished)

c: I's cost of law-entorcement

l: social loss to I for

Let $\Gamma_{k,m}(n)$ denote the game described above. (n,k,m) denotes the state of the system in which players I and II possess k and m times to take actions, respectively, and they have n periods to go as their "mission time." Let $(u_{k,n}(n), v_{k,m}(n))$ represent the equilibrium values of this non-zero-sum n-stage game $\Gamma_{k,n}(n)$. Then the Optimality Equation of dynamic programming gives a system of equations

$$(2) \begin{array}{c} (u_{k,m}(n), v_{k,m}(n)) = \mathbb{E}_{1}.Val. \\ & \qquad \qquad E \\ \hline (2) \\ (4) \\ (5) \\ (7) \\ (8) \\$$

(if the equilibrium values exist uniquely), with the boundary conditions: (以下 歌)

In the present paper we shall investigate the incomplete-information version of the above game. Each player may not know his opponents and/or his own allowed number of actions, and is able to estimate only by some probability dis tribution Suppose that (k, m) is a bivariate random variable with independent Bernoulli marginal distributions with parameters X and B (See Table 1) This distribution is assumed to be a common knowledge for each player.

Table 1 Bivariate type distribution

Among the possible $2^4 = 16$ Is we shall focus our attention to the following four Is.

(1°) 1^{11} :

i.e. complete information: Both players know both of k and m.

(2°) 1^{10} :
i.e. symmetric (or private) information: Each player knows his owntype, but

not the opponents.

(3°) I'': and I'': i.e. asymmetric information; One player knows both players types whereas the other can know his own type only. (以下明备)

Full paper is to appear in:

Part I. - Math. Japonica, 48 (1998).

Part II - Game Th. & Appl., IV, Nova Sci Publishers, New York, 1998.