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1 Introduction

In this paper we consider a capacitated vehicle routing
problem on a tree-shaped network with a single depot.
Let T = (V, E) be a tree, where V is a set of n vertices
and F is a set of edges, and r € V be a designated ver-
tex called depot. Nonnegative weight w(e) is associated
with each edge e € E, which represents the length of
e. Customers are located at vertices of the tree, and a
customer at v € V has a positive demand D(v). Thus,
when there is no customer at v, D(v) = 0 is assumed.
Demands of customers are served by a set of identical
vehicles with limited capacity. It is assumed that the
capacity of every vehicle is equal to one, and that the
demand of a customer is splittable, i.e., it can be served
by more than one vehicle. Each vehicle starts at the
depot, visits a subset of customers to (partially) serve
their demands and returns to the depot without violat-
ing the capacity constraint. The problem asks to find
a set of tours of vehicles with minimum total lengths
to satisfy all the demands of customers. We call this
problem TREE-CVRP.

Vehicle routing problems have long been studied
by many researchers (see {2, 4] for a survey), and are
found in various applications. Recently, AGV and ma-
terial handling robots are often used in manufacturing
systems, but also in offices and hospitals, in order to
reduce the material handling efforts. The tree-shaped
network can be typically found in buildings with simple
structures of corridors and in simple production lines

of factories.
Vehicle scheduling problems on tree-shaped networks

have recently been studied by several authors [1, 3, 7).
However, TREE-CVRP has not been studied in the lit-
erature. We first show that it is strongly NP-complete.

We then turn our attention to approximation algo-
rithms. Since TREE-CVRP is a special class of general
CVRP, approximation algorithms for CVRP on general
undirected networks can be used. In particular, the it-
erated tour partitioning (ITP) heuristic proposed by [5]
provides 1 + (1 — %)a approximation for such general
case when a-approximation algorithm for TSP is avail-
able, where the capacity of every vehicle is assumed to
be equal to k and the demand of every customer is a
positive integer. For tree-shaped networks, TSP can
be optimally solved in a straightforward manner, and
thus we have a (2 — 1)-approximation algorithm.

In this paper, we shall present an improved 1.5-
approximation algorithm for TREE-CVRP by exploit-
ing the tree structure of the network. We have imple-
mented our algorithm and carried out computational
experiments to see how effective our algorithm is. T was
shown that the solutions obtained by our algorithm are
very close to optimal [6]. =

2 Preliminaries -
For vertices u;b € V, let path(u,v) be the unique path

between u and v. The length of path(u,v) is denoted
by w(path(u,v)). We often view T as a directed tree
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rooted at r. For a vertex v € V — {r}, let parent(v)
denote the parent of v, and C(v) the set of children
of v. When we write an edge e = (u,v), u is assumed
to a parent of v. For any v € V, let T, denote the
subtree rooted at v, and w(T,) and D(T,) denote the
sum of weights of edges in T, and the sum of demands
of customers in T, respectively. Since customers are
located on vertices, customers are often identified with

vertices. . )
Suppose that we are given a set S C V — {r} with

> ves D(v) < 1. Then one vehicle is enough to serve all
the demands of customers in .S, and an optimal tour for
S can be trivially obtained by first computing a mini-
mal subtree T’ that spans S U {r} and by performing
a depth-first search with r as the starting vertex.

A solution of TREE-CVRP consists of a set of tours.
We can represent the tour of the j-th vehicle by

{D;(v) | veS;} (1)
where S; is the set of customers for which some positive
demands are served in the j-th tour, and D;(v)(> 0)
for v € S; is the amount of demand that the j-th ve-
hicle serves at v. The total tour lengths of an optimal

solution for TREE-CVRP is often referred to as the
optimal cost.

For an edge e = (u,v), let

LB(e) = 2w(e) - [D(T,)1- (2)
LB(e) represents a lower bound of the cost required
for traversing edge e in an optimal solution because,
due to the unit capacity of a vehicle, the number of
vehicles required for any solution to serve the demands
in T, is at least [D(T.,)] and each such vehicle passes
e at least twice (one is in a forward direction and the
other is in a backward direction). Thus, we have the
following lemma.

Lemma 1 ), LB(e) gives a lower bound of the op-
timal cost of TREE-CVRP.

3 Algorithm

A vertex v € V is called D-feasible if D(T,) > 1 and
is called D-minimal if it is D-feasible but any of its
children is not. The proposed algorithm first finds a
D-minimal vertex, and determines a routing of one or
two vehicles that partially serve demands of vertices
in T, by applying Strategy 1 or 2 depending on the
cases as will be described below. We then appropri-
ately update the remaining demands of vertices visited
by the routing currently determined. In addition, if
the remaining demand of subtree T, becomes zero, T,
as well as the edge (parent(v),v) is deleted. In this
section, we abuse the notations D(v) and D(T,) to de-
note the remaining demands of vertex v or subtree T,
respectively unless confusion occurs. We repeat this
process until all the demands of T are served. Notice
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that, if there is no D-feasible vertex (i.e., D(T) < 1)
any more, we can optimally serve the remaining de-
mands by visiting the relevant vertices in a depth-first

manner.
The algorithm consists of a number of applications

of Strategy 1 or 2. One application of Strategy 1 or 2
is called a round.

hen a D-minimal vertex v is found, we apply
the following two strategies and choose the one with
cheaper cost. Let C(v) = {vi,ve,...,vp}. from T.
1 < 3,.esD(Ty,) < 2. Since D(Ty,;) < 1 for all
v; € C(v) from D-minimality of v, such S always exists
and can be easily computed as U, T\, satisfying

k—1 k
> D(T,,)<1 and » D(T,)>1
=1

i=1

If Zle D(T,,) = 1, we simply allocate one vehicle to
serve all the demands in US_,T,,. Thus, we assume
otherwise. We can assume k = 2 without loss of gen-
erality because otherwise we can equivalently modify

*"With this assumption, the algorithm considers sub-
trees T,, and T, satisfying

D(T,,) <1,D(T,,) <1 and D(T,,)+ D(T,,) > 1.

(3)
The first strategy (Strategy 1) prepares two vehicles to
serve all the demands in T, U T,,, while the second
strategy (Strategy 2) prepare one vehicle to partially
serve the demands in T,, UT,, by using its full capac-
ity (thus, the demand of some vertex may possibly be
split).

Strategy 1: We prepare one vehicle for T, and an-
other vehicle for T, to separately serve demands of T,
and T,,. The cost to serve these demands is

4w(path(r,v)) + 2w(Ty,) + 2w(Ty,) 4

because two vehicles run on the path path(r,v) but
each of Ty, and T,, is traversed by only one vehicle.

Strategy 2: We assume w(7Ty,,) > w(Ty,) without
loss of generality. We split the demand D(u) of every
u € T, into D'(u) and D" (u) so that

Z D(u) + Z D'(u) = 1.

uGTul ’METvg

(5)

We allocate one vehicle to serve the set of demands
{D(v) |u€T,} and {D'(u)|u€T,}

The computation of such D’(u) satisfying (5) is straight-
forward (the details are omitted). Notice that the de-
mand of at most one vertex is split by this procedure.
The cost required for Strategy 2 is at most

2w(path(r,v)) + 2w(Ty, ) + 2w(Ty,)- (6)

Demands of some vertices in T, remain unserved, and
thus T, (or its subgraph) will be visited later by other
vehicles. Thus, in total the cost to visit T,, (or its

subgraph) will be counted twice or more as (6). For
the ease of the analysis of approximation ratio of the
proposed algorithm, we amortize the the cost to visit
T,, in the current round so that it is charged to T.,.

Since w(T,,) > w(Ty,), the cost of (6) is bounded from

above by
2w(path(r,v)) + 4w(Ty, ). (7)

We consider (7) as the cost for Strategy 2.

It should be remarked that our algorlthm chooses
Strategy 1 or 2 not by directly comparing the costs of
(4) and (7), but by the following rule.

Selection rule of Strategy 1 or 2:
We apply Strategy 1 if

4w(path(r,v)) + 2w(Ty,) + 2w(Ty,)

2w(path(r,v)) + 2w(Ty,) + 2w(Ty,)
2w(path(r,v)) + 4w(Ty,)
2w(path(r,v)) + 2w(Ty,)’

(8)

and apply Strategy 2 otherwise.

The rationale behind this selection rule is as follows:
Since the amounts of demands as well as the sets of
customers served by Strategies 1 and 2 are different

in general, it may not be fair to directly compare (4)
and (7), but it is reasonable to compare the costs of
(4) and (7) divided by the lower bounds of the costs to
optimally execute their corresponding tasks.

Theorem 1 The approzimation of our algorithm for
TREE-CVRP is 1.5. ( The proof is omitted.)
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