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Introduction

Many problens in control and system theory can
be formulated using Lincar Matrix Incqualitics
(LMIs) [1] which we can interpret as a Semidefi-
nite Program (SDP) [7] in the ficld of optimiza-
tion. The intensive rescarch and advances in
interior-point methods in these few ycars have
provided polynomial complexity algorithms for

SDPs [5] and have increased the importance of
LMIs in control theory as well. The main focus of

this talk is to proposc an algorithm to solve a bi-

lincar extension of the LMI known as the Bilinear

Matriz Inequality (BMI). BMIs have an advantage
of describing control systems more precisely than
LMIs, though it is known that they arc very dif-
ficult problems in practice [6). Our rescarch con-
sists in analyzing the particular bilinear structure
of BMIs by a Branch-and-Bound algorithm.

Consider then &k X k-symmetric matrices B;
(¢ =0,1,---.m = 0,1,---.n), and definc a
bilincar comnbination of them as:

w y) = ZZ TJJBIJ+Z B,O
= ]J 1
+Z%’BOJ + Boo-
v = 7
(x,y) € R™ xR",  B(z.y) € R>F

Thc Bilincar Matrix Incquality (BMI) is a con-
straint of the form:
B(z.y) 20 (1)
i.c., a bilincar combination of the matrices Bj;
which is a necgative semidefinite matrix. Partic-
ularly, when B;; = 0 (¢ = 1.2.---.m: j =
1,2.---.m), (1) becomnes an LML
We introduce now an optimization problemn

that we name the BMI eigenvalue  problemn
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(BMIEP) and includes (1) in its restriction.

min A v
(BMIEP) st. M —-B(z.y)>0 (2)
(x.y) €F
where F = {(z.y) e R xR": z <z <T.

y < y <y} is a box constraint.

Solviug the optimization problem (2). we can
determine if there is or not a point in F that sat-
isfies (1). Answering this question is an important.
problem in robust control known as the BMI fea-
sible problem. From the discussion given in the
following scction. we notice also that our branch-
and-bound algorithin works for any lincar objec-
tive function and even for any additional LMIs or
BMIs in the restriction of (2).

A Branch-and-Bound Algorithm

At cach iteration of our branch-aid-bound algo-
rithm, we solve a Lincar Relaxed Problem of the
minimization problem BMIED. Renaming the hi-
lincar terms x;y; by w;; in (2). we transform it
in an SDP [2]. Further. we introduce some hyper-
planes that restrict the domain of the correspond-
ing lincar minimization problem.

The Linearized BMI  eigenvalue  Problem
(BMIEP;,) becomes:
min A
(BMIEP) st M - B,,,(a:.y,'w) =0
' (z.y.w) € Fu
(3)
WIICIC . n. m
Bi(z.y.w) = ZZU},JB,, +Zl Bo
i=1 _/'-
+ Z leO/ + BOﬂ
v = .
(:E, Y. u,) c R xR xR B[_(:I!. yw) G-.SRI“X"'

and
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Fu = {(z,y,w) €R™ x R" x R™"
w S 5!?'!7'*‘ TY — _@y,
w < 2y + Ty - Ty,
w > wy + 2y — Ty,
w > oY+ Ty — Ty}
Proposition

(i) ]':'m 2 T’m
— {(m‘ y’ w) e §R”"v X §R7I‘ X ?R‘"l'"r : (m“y) e F‘
Ly =wy,t=1,2,---,mj=12--.n}

The optimal valuc of the BMIEP, (3) gives
a lower bound of the optimal value of the
BMIED (2). '

(ii)

An upper bound for the BMIED can be computed
using the following heuristic. Once we fix x or y.
the restriction of (2) becomes an LMI. Therefore,
minimizing alternatively the problem (2) with re-
spect to  with y fixed, and vice versa., we obtain
a rcasonable approximation of a local optimal.

We propose a variation of the bisection method
to generate cach subproblem in our branch-and-
bound algorithm. Information concerning about
the solution of the BMIED, is used as a heuristic
for our branching process.

We implemented our branch-and-bound algo-
rithm in C++, and we solved several randomly
generated problems. We incorporated the SDP
solver SDPA (3] in its subroutines.

Concluding Remarks

The algorithm proposed in this talk is onc of the
first ones that scriously challenges to solve BMI
problems. Our numerical experiments show that
BMI problems with the dimension of the variables
z and y rounding up to 7 arc solved in an ac-
ceptable time for randomly generated problems.
From the formulation we adopted. one can con-
clude that the size of the SDP solved in cach
subiteration of the branch-and-bound algorithm
depends strongly on the dimension m and n of
the variables £ and y. respectively, other than
the dimension & of the matrices.

A further topic for improvements in this line
of rescarch is to analyzc the convex hwull of F,
that it is not' well know for n and m simultanc-
ously grcater than 1. Also, we can work with

SDP rclaxations instead of Lincar rclaxation of
the BMIs using the recently proposed Successive
Convex Relaxation Method of Kojima and Tungel

[4].
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