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1 Introduction

This article considers state-probability vector re-
lationship between a finite-capacity queue and an
infinite-capacity queue with MAPs (Markovian Arrival
Processes), and presents an exact formula of the loss
probability for MAP/GI/1/K queue in terms of the
state-probability vector of the corresponding infinite-
capacity queue, where K is the total capacity for the
systemn.

Unfortunately, an explicit formula of the loss
probability and the state-probability vector for
MAP/GI/1/K queue is not known at present. In gen-
eral it requires much computational effort to obtain
the state-probability vector for MAP/GI/1/K queue.
On the other hand, numerical algorithms to solve the
infinite-capacity queues have been extensively studied.
Hence, it may be useful to express the state-probability
vector for the finite-queue and the loss probability us-
ing that for the corresponding infinite-capacity queue.

2 The MAP finite-capacity and
infinite-capacity queues

The queue considered in this article is characterized
as follows. Customers arrive to the queue according to
an m-state MAP with representation (D, D,). Here
Dg and D¢ are m X m matrices. The MAP is a versatile
point process where our familiar arrival processes such
as Poisson process, IPP(Interrupted Poisson Process),
and MMPP(Markov Modulated Poisson Process) are
included as special cases.

In the MAP, D, the sum of Dy and D,, is the in-
finitesimal generator of the underlying continuos-time
Markov chain {J(t); t > 0} which governs customer ar-
rivals. Note that De = o, where e denotes a column
vector of ones. Let 7 be the steady state-probability
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vector of D such that

x D=0, (1)

Let A denote the traffic intensity bf the arrival process,
then ) is given by

wte =1.

)\:‘A'Dle. (2)

Let N(t) denote the queue length at time ¢, includ-
ing a customer in service and Py, be the probability
that an arriving customer is lost. Customers accepted
by the system are served by the single server on the
FIFQ (first-in-first-out) basis. The service time is gen-
erally distributed with probability distribution func-
tion of B(z) with mean E(B) and the Laplace-Stieltjes
transform (LST) B(s) = Js° e *=B(dz). Let B(t) be
the remaining service time of B(t).

In this section, we perform an analysis to the queue-
ing model by using the sup'plemenjca.'ry variable method.
It is clear that the joint distribution.of the queue length
N(t), state J(t), and a supplementary variable B(t)
has a Markovian property with 0 < N(t) < K and
1<J(@)<m.- o

‘We further define the following notations for -our
analysis. - :

Pi(z) (Pia(2), -y Pim()),
Po = (Poi, ---, Pom), »
Pij(z)de = lim Pr{N(t) =1, J(t) = j,
z<1§(t)<¢+dz},
Po; = th_f& Pr{N(t) = 0, J(¢) = j}
where i = 1, 2, ..., K, j = 1, ..., m. We also
define P{)(z), PS>, P,-(f)(:c)dz, Pé"’;’), the joint dis-

tributions of the corresponding infinite-capacity queue
in the same way. Observing the system state at time ¢
and ¢ + A, we have the following equations.

0 = PoDo + P1(0) (3)



P& _ P @D~ Ro)D, B2
_p(0)%8 (z) (4)
dfj;i"’) - wP,-(:z;)Do~P,-_1(z)D1
(052 (5)
dF, gz(”’) = -Px@D - Pxa@D:  (6)
where i = , K — 1. We denote the LT vectors by
ﬁ.-<s) = (Bas), o, Pils)
P)(s) (P‘w’(e) - P(s)

where P; ;(s) (15i(";°)(s))is the LT of P; ;(z) (P,(T)(J:))
We then obtain the Laplace transforms,

Pi(s)(sI + Do) = Py(0) ~ PyD;B(s)
—Py(0)B(s), (7)

Pi(s)(sI + Do) = P;(0)~ P;_1(s)D
| ~Pi1(0)B(s), (8)
Pr(s)(sI + D) = Pg(0)— Px_1(s)Dy, (9)

where i = 1, ..., K — 1. From the normalization
condition,
. K .
Poe +) Pi(0)e =1. (10)
B =3 |
3 Result

THEOREM. The state-probability vector for MAP/
GI/1/K queue is proportional to that for the cor-
responding infinite-capacity queue, and the following
equations hold,

Pi(0)
(11)

— 1 p>(c0)
Pie +Y . T B ©0)e +PE) (0)D.e R0,

where k == 0, ..., K — 1. We can also express the loss
probability Py, in terms of P{*)(0),

Ploss =1— —(Z PE0)e + P (0)Dre). (12)
&

4 The proof of Theorem

In this section, we prove the above result. By ap-
plying Little’s law to the service process of the server
(excluding the waiting room), we have

Poe =1- (1 - Pl;nxa)p, (13)

where p = 7 Dye E(B). v
Note that, (3)-(5) are identical with the correspond-
ing equations for MAP/GI/1 queue with an infinite-
capacity. Therefore we can show that the state-
probability vector for MAP/GI/1/K queue is propor-
tional to that for the corresponding infinite-capacity

queue, and the following equations hold,
Py = P, Piz) = eP™)(z), (14)

where ¢ is a constant. and 7 = 1, , K — 1. We then
perform the Laplace transforms of (14), we obtain

Ps) =cP™)s) (1<i<K-1). (15)
Substituting s = 0 into (9) yields
Pr(0)e = Px_1(0)De. (16)
Substituting (14), (15), (16) into (10), we have
K-1
cPf®e + Z cP,£°°)(0)e
k=1
+ePE2(0)Dse =1, (17)

from which we can determine the proportional constant
c’
1
L P 0)e + PEI(0)Dre
(18)
From these results, we have shown that the equa-
tions (11) and (12) hold and we can express the state-

probability vectors P,(0) and the loss probability Pp.ss
in terms of P{*)(0).
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