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1 Introductidn

Data Envelopment Analysis(DEA) is a useful non-
parametric method to evalutate a relative effi-
ciency of mult-input and mult-output units based
on observed data. Its goals may be abbreviated
by classifying the Decision Making Unit(DMU)
into two groups; efficient or inefficient. However,
the uncertainty like a measurement error should
be incorporated in observed data, and clearly, it
is important to assess the stability of efficiency
classifications in DEA. In recent years a substan-
tial amount of scholarly effort has been devoted
to the development of efficiency measures con-
sidering the uncertainty ([1], [2] etc).

In this paper, the expansion of [2] for assess-
ing the stability of classification is presented. An
DMU’s current activity serves as the center for
a cell within which the DMU’s classification re-
mains unchanged under perturbation of the data.
The maximal radius of such a cell may be inter-
preted as a measure of robustness for the clas-
sification under perturbations of the data (es-
pecially with respect to errors). We evaluete
the maximal radius with the inner-product norm,
while /4, I, (or Chebychev) norms are adopted in
[2]. There are, at least, following three merits in
adopting the ellipsoidal norm.

e It is a standard norm fory a radius of the
ball preserving DMU’s classification.

e For inefficiet DMUs, the nearest efficient
point is obtained, i.e., we can find the most
achievable: improvement.

e Our formulation can be applied to the sto-
castic DEA model, which assumes that data
may have normally distributed measurement

~error. ' o
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2 Formulation

We consider r DMUs Let each activity of DMU;
(j = 1,---,7) be zj (:L'],yj) € R™, where
x; € R™ is a input vector, y; € R’ is a output
vector and » = m + s. Suppose that DMUy, - - -,
DMU, (¢ < r) are classified into efficient DMUs
in CCR-model, BCC-model or variants and that
DMU, denotes the DMU being tested about the
stability of its classification, where the subscript
0 € {1,---,7}. Each DEA model assumes the
theoretically possible input-output levels (refer-
ence set P) and it can be expressed by efficient
activities 21,--+,24. Also, let P denote the
reference set constructed excludmg DMUO s ac-
tivity.
The maximal radius problem for efficient DMUg

is formulated as a convex quadratic program-
ming problem: ‘

min (2 — 20) Q(z — 20) 0
s.t. ze Pl . ,

, where Q is positive definite matrix

When the DMUj is inefficient, the maximal
radius problem is reduced to the following non-
convex problem, whose feasible region is the com-
plement of a convex set.

min  f(z) = (2 — 20) Q(z — 20)
st. zeR"\P ’ (2)

, where X denotes the closure of the set X.
Problem(1) is a convex programming problem
and is rather easy to solve by using some of typ-
ical algorithms. On the other hand, Problem(2)
has a nonconvex body and is a difficult prob-
lem. Theérefore, we primaly deal with this diffi-
cult problemn, and will show that Problem(2) is
reduced to the Linear Reverse Convex Program-
ming (LRCP) problem and the Concave Quadratic
Programming (CQP) problem.



3 Transformation

3.1 Linear Reverse Convex Program

At first, we give some following definitions. In
BCC-model,

e; € R™ . the ¢ unit vector
(= 2z 1 (n+1)x(g+n)
D= ( 1 1 1 of J€F

= (e1,--,e ,—€41 ,--,—ey )ERM"

I
T = ( Yy ) € Rn+1’ 20 — (Z_o) € Rn+1
X9 1

U _ ( Qo;l g ) e R(n+l)x(ﬂ+l).

In CCR-model, the last row and column vec-

tors of matrix U and the last element of vectors
(xz and 2o ) are dropped, i.e.,

D = (zl, oz I) € Rnx(q+n) z=yc¢€ R,
%0 = z9 € R, and U = Q!. Then, for in-
efficient DMUyp, consider the following problem
including one nonconvex constraint :

min g(z) = -2lz :
subject to DTz <0 (LRCP)
TUz > 1.
Theorem 3.1  Local and global minimizers of

(LRCP) are one-to-one correspondmg to those of
problem(2).

We can unify some DEA-models (CCR, BCC,
and variants) when measuring the inefficiency of
DMUp.

3.2 Concave Quadratic Program

As well as the LRCP problem, we will show the
equivalence between problem(2) and the concave
quadratic program (CQP) proposed below. The
definitions of D, @, %o and U are same as those
of 3.1.

max g(z)=2TUz
subject to DTz <0 (cQp)
—zle<1

Theorem 3.2 Local and global minimizers bf
(CQP) are one-to-one corresponding to those of
problem(2).

-4 Algorithm

For the concave minimization problem such as
(CQP), enumerative algorithms based purely upon
cutting planes are suggested. (See [3].) It is
known that an optimal solution is always found
after a finite number of iterations, if we combines
~-valid cut used in pure cutting plane approaches
and facial cuts created by Majthay and Whin-
ston ({4]). In these algorithm, simplex-based search
for a local optimum is proposed, however, it takes
much computation in exchanging basic and non-
basic variables, since the quadratic term of the
objective function requires additional operations
between matrices. Therefore, we propose the
technique of the simplex-based search for (LRCP),
which need not the exchange of basic and nonba-
sic variables for matrix U. Also, we arrange the
construction of these two kind of cuts for (LRCP)
and propose the finite cutting algorithm.

5 Simple Example

We test our technique with the simple exam-
ple using the actual depertment-store data set
in 1997. We will show some results in the pre-
sentation.
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