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1 Introduction

Let G = (V, E) stand for an undirected multigraph with
a set V of vertices and a set E of edges. The connectivity
augmentation problem has been extensively studied as an
important problem in the network design problem.

The local edge-connectivity Ag(z,y) for two vertices
z,y € V is defined to be the minimum size of a cut in
G that separates z and y (i.e,, z and y belong to differ-
ent sides of X and V — X), or equivalently the maximum
number of edge-disjoint path between z and y by Menger’s
theorem [1]. The local vertex-connectivity kg(z,y) for two
vertices z,y € V is defined to be the number of internally-
disjoint paths between z and y in G. For a given integer
k, we call G k-edge-connected (resp., k-vertez-connected)
if Ag(z,y) > k (resp., kg(z,y) > k) holds for every
z,y € V. Given a multigraph G = (V, E) and an inte-
ger k, the edge-connectivity augmentation problem, (resp.,
the vertez-connectivity augmentation problem) asks to aug-
ment G by adding the smallest number of new edges so that
the resulting graph G’ becomes k-edge-connected (resp., k-
vertex-connected). Recently, many efficient algorithms are
developed for solving the edge-connectivity augmentation
problem and the vertex-connectivity augmentation prob-
lem.

In this paper, we consider the problem of augmenting the
edge-connectivity and the vertex-connectivity of a given
graph G simultaneously by adding the smallest number of
new edges. For two given integers k and ¢, we say that G
is (k,£)-connected if G is k-edge-connected and ¢-vertex-
connected. Given a multigraph G = (V, E), and two in-
tegers k, £, the edge- and vertez-connectivity augmentation
problem, denoted by EVAP(k, £), asks to augment G by
adding the smallest number of new edges to G so that the
resulting graph G’ becomes (k,vf)-connected. Recently, it
is shown in [2] that EVAP(k,2) can be solved in polyno-
mial time for an integer k. In this paper, we show that
EVAP(4,3) can be solved in polynomial time, if the input
graph is 2-vertex-connected.

2 Definitions
For a subset V' CV in G, G — V' denotes the subgraph

induced by V — V', For an edge set F with FNE =0, we
denote G = (V,EUF) by G+ F. An edge with end vertices
v and v is denoted by (u,v). A partition X;,---,X; of
vertex set V' means a family of nonempty disjoint subsets
of V whose union is V, and a subpartition of V means
a partition of a subset of V. For two disjoint subsets of
vertices X, ¥ C V, we denote by Eg(X,Y) the set of
edges, one of whose end vertices is in X and the other is
in Y, and also denote ¢g(X,Y) = |Eg(X,Y)]. A cutis
defined as a subset X of V with @ # X # V, and the size
of a cut X is denoted by cg(X,V — X), which may also be
written as ¢g(X). A cut with the minimum size is called a
minimum cut, and its size, denoted by A(G), is called the
edge-connectivity of G. For a subset X of V, {v e V - X |
(u,v) € E for some u € X} is called the neighbor set of
X, denoted by I'g(X). Let p(G) denote the number of
components in G. A separator of G is defined as a cut S of
V such that p(G —S) > p(G) holds and no S’ C S has this
property. If G does not contain K,, then a separator of the
minimum size is called a minimum separator, and its size,
denoted by k(G), is called the vertez-connectivityof G. If G
contains the complete graph K, we déefine k(G) =n—1. If
k(G) = 2, then we call a minimum separator S a separating
pair in G.

2.1 Edge-Splitting

We introduce an operation of transforming a graph,
called edge-splitting, which is helpful to solve the edge-
connectivity augmentation problem.
(V,E), a designated ver-
tex s € V, vertices u,v € Tg(s) (possibly u = v)
and a nonnegative integer § < min{cg(s,u),ce(s,v)},
(V,E') from G by deleting
§ edges from Eg(s,u) and FEg(s,v), respectively, and
cor(s,u) = cg(s,u) —
cg(u,v) + 6,
ce(z,y) for all other pairs z,y € V. We say

Given a multigraph G =

we construct graph G' =

adding new § edges to Eg(u,v):
8, cgi(s,v) = cg(s,v) — 8, cgr(u,v) =
cgr(z,y) =
that G’ is obtained from G by splitting (s,u) and (s,v) by
size 6, and denote the resulting graph' G’ by G/(u,v;6). A
sequence of splittings is complete if the resulting graph G’
does not have any neighbor of s.
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The following theorem is proven by Mader [3].

Theorem 2.1 [3] Let G = (V,E) be a multigraph with a
designated vertez s € V with cg(s) # 1,3 and Ag(z,y) > 2

for all pairs x,y € V. Then for any edge (s,u) € E there

is an edge (s,v) € E such that ,\G/(u',,;l)(:t,y)‘ = Ag(z,y)
holds for all pairs z,y € V — s. =]

This says that if cg(s) is even, there always exists a com-

plete splitting at s such that the resulting graph G’ satisfies

Agi~s(z,y) =

3 EVAP(4,3) for a 2-Vertex-Connected
Graph

We now present a polynomial time algorithm for

Ag(z,y) for every pairof z,y € V — s.

EVAP(4,3) for a given 2-vertex-connected graph.

Let B(G) = max{p(G — S) — 1 + max[0, max{4— cg(vy),
4 —cg(v2)}} | S = {v1,v} is a separating pair in G]. To
make a graph G (4, 3)-connected, it is necessary to add at
least 4 — cg(X) edges to Eg(X,V — X) for each cut X,
to add at least 3 — |I'g(X)| edges to Eg(X,V — X) for
each cut X with V — X —T'g(X) # 0, and to add at least
p(G — S) — 1+ max|0, max{4— cg(v1), 4 — cg(v2)}}] edges
to connect components of G — S for each separating pair
S.= {v1,v2} in G.

= max{[e( G)/2] B(G)}, where

Lower Bound: v(G)
P

a(G) = max{ Y (4 —cc(X)+2 )
=1 i=p+1

and the max is taken over all subpartitions {X;,---,
Xpy Xpt1,--+,Xq} of V such that ¢ > p > 0 and V —
X;-Te(X))#0,i=p+1,---,q a

—|Te(X

For a subset F of edges in a graph G, we say that two
edge e; = (uy,w;) and ey = (ug,wq) are switched in F if
we delete e; and e, from F, and add edges (u;, %) and
(w1, w2) to F, and that an edge e; = (u;,w;) is shifted
in F, if we delete e; from F and add an edge (u;,ws)
(w; # wy) to F. The sketch of our algorithm for solving
the EVAP(4, 3) for a 2-vertex-connected graph, denoted by
Algorithm EVA3, is given as follows.

Algorithm EVA3

Input: An undirected 2-vertex-connected multigraph G =

(V,E).

Output: An undirected m\;ltigraph G* = G+ F with
A(G*) > 4 and n(G*) > 3 where the size of new edge
set F' is the minimum.

Step I. (Adding vertex s and associated edges):

After adding a new vertex s, we can add a set Fy of
new edges between s and V so that |F}| = a(G) and

the resulting graph G; = (V U {s}, E U F}) satisfies
cg,(X)>4forallcut X C V, |Tg, (X Us)| > 3 for
all cut X CV with V - X —Tg,(X) #0.

Step II. (Edge-splitting): We find a complete edge-
splitting at s in G; which preserves the 4-edge-
connectivity, according to Theorem 2.1. Ignore the
isolated vertex s and denote the resulting graph G, =

(V,EU F»).

If G, is also 3-vertex- connected, then we are done be-
cause |Fy| = |F1|/2 = [a(G)/2] implies that G, is
optimally augmented by lower bound [a(G)/2]. Oth-
erwise, go to Step III.

Step III. (Switching and Shifting edges) No“ G,
has separating pairs.

We repeat switching or shifting edges in F2 so that the
resulting graph G} satisfies the following properties:
- the 4 edge-connectiv 1ty, )
- kgy(z,y) > 3forall z,y € V with ch(x y) > 3
- p(Gy — S) < p(G2 — S) for some separating pairsS.

Let G3 = (V, EUF3) be the resulting graph, where F3
denotes the final 5. Then in Gj, there is no separat-
ing pair S, S» such that $;:N S, = 0.

If G3 has no separating pair, then we are done, since
|F3] = [a(G)/2] implies that G3 is optimally aug-
mented. Otherwise, go to Step IV..

Step IV. (Edge augmentation): Now one of the fol-
lowing (i) or (ii) satisfy: .
(1) We can make G3 3-vertex-connected by adding a
set. Fy of 8(G) — [a(G)/2] new edges, i.e., we are done
since |F3| + |Fy| =
graph is optimally augmented by lower bound B(G)
(ii) The input graph G can be made (4,3)- connected
by adding at most four edges.

B(G) implies that the resulting

Theorem 3.1 For a 2-verter-connected hz.ultigmph G, G

can be made (4,3)-connected by adding v(G) = max{[
a(G)/2],8(G)} new edges or at most four new edges in
polynomial time. , ' a
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