Optimally Augmenting to Make a Biconnected Graph Four-Edge and Three-Vertex Connected

02004044 Kyoto University 01403794 Kyoto University * ISHII Toshimasa

NAGAMOCHI Hiroshi

01001374 Kyoto University IBARAKI Toshihide

1 Introduction

Let G = (V, E) stand for an undirected multigraph with a set V of *vertices* and a set E of *edges*. The connectivity augmentation problem has been extensively studied as an important problem in the network design problem.

The local edge-connectivity $\lambda_G(x,y)$ for two vertices $x,y \in V$ is defined to be the minimum size of a cut in G that separates x and y (i.e., x and y belong to different sides of X and V-X), or equivalently the maximum number of edge-disjoint path between x and y by Menger's theorem [1]. The local vertex-connectivity $\kappa_G(x,y)$ for two vertices $x, y \in V$ is defined to be the number of internallydisjoint paths between x and y in G. For a given integer k, we call G k-edge-connected (resp., k-vertex-connected) if $\lambda_G(x,y) \geq k$ (resp., $\kappa_G(x,y) \geq k$) holds for every $x, y \in V$. Given a multigraph G = (V, E) and an integer k, the edge-connectivity augmentation problem, (resp., the vertex-connectivity augmentation problem) asks to augment G by adding the smallest number of new edges so that the resulting graph G' becomes k-edge-connected (resp., kvertex-connected). Recently, many efficient algorithms are developed for solving the edge-connectivity augmentation problem and the vertex-connectivity augmentation problem.

In this paper, we consider the problem of augmenting the edge-connectivity and the vertex-connectivity of a given graph G simultaneously by adding the smallest number of new edges. For two given integers k and ℓ , we say that G is (k,ℓ) -connected if G is k-edge-connected and ℓ -vertex-connected. Given a multigraph G=(V,E), and two integers k,ℓ , the edge- and vertex-connectivity augmentation problem, denoted by $\text{EVAP}(k,\ell)$, asks to augment G by adding the smallest number of new edges to G so that the resulting graph G' becomes (k,ℓ) -connected. Recently, it is shown in [2] that EVAP(k,2) can be solved in polynomial time for an integer k. In this paper, we show that EVAP(4,3) can be solved in polynomial time, if the input graph is 2-vertex-connected.

2 Definitions

For a subset $V' \subseteq V$ in G, G - V' denotes the subgraph does not have any neighbor of s.

induced by V - V'. For an edge set F with $F \cap E = \emptyset$, we denote $G = (V, E \cup F)$ by G + F. An edge with end vertices u and v is denoted by (u,v). A partition X_1,\cdots,X_t of vertex set V means a family of nonempty disjoint subsets of V whose union is V, and a subpartition of V means a partition of a subset of V. For two disjoint subsets of vertices $X, Y \subset V$, we denote by $E_G(X,Y)$ the set of edges, one of whose end vertices is in X and the other is in Y, and also denote $c_G(X,Y) = |E_G(X,Y)|$. A cut is defined as a subset X of V with $\emptyset \neq X \neq V$, and the size of a cut X is denoted by $c_G(X, V - X)$, which may also be written as $c_G(X)$. A cut with the minimum size is called a minimum cut, and its size, denoted by $\lambda(G)$, is called the edge-connectivity of G. For a subset X of V, $\{v \in V - X \mid v \in V \}$ $(u,v) \in E$ for some $u \in X$ is called the neighbor set of X, denoted by $\Gamma_G(X)$. Let p(G) denote the number of components in G. A separator of G is defined as a cut S of V such that p(G-S) > p(G) holds and no $S' \subset S$ has this property. If G does not contain K_n , then a separator of the minimum size is called a minimum separator, and its size, denoted by $\kappa(G)$, is called the vertex-connectivity of G. If G contains the complete graph K_n , we define $\kappa(G) = n-1$. If $\kappa(G) = 2$, then we call a minimum separator S a separating pair in G.

2.1 Edge-Splitting

We introduce an operation of transforming a graph, called *edge-splitting*, which is helpful to solve the edge-connectivity augmentation problem.

Given a multigraph G=(V,E), a designated vertex $s\in V$, vertices $u,v\in \Gamma_G(s)$ (possibly u=v) and a nonnegative integer $\delta\leq\min\{c_G(s,u),c_G(s,v)\}$, we construct graph G'=(V,E') from G by deleting δ edges from $E_G(s,u)$ and $E_G(s,v)$, respectively, and adding new δ edges to $E_G(u,v)$: $c_{G'}(s,u):=c_G(s,u)-\delta$, $c_{G'}(s,v):=c_G(s,v)-\delta$, $c_{G'}(u,v):=c_G(u,v)+\delta$, $c_{G'}(x,y):=c_G(x,y)$ for all other pairs $x,y\in V$. We say that G' is obtained from G by splitting (s,u) and (s,v) by size δ , and denote the resulting graph G' by $G/(u,v;\delta)$. A sequence of splittings is complete if the resulting graph G' does not have any neighbor of s.

The following theorem is proven by Mader [3].

Theorem 2.1 [3] Let G = (V, E) be a multigraph with a designated vertex $s \in V$ with $c_G(s) \neq 1, 3$ and $\lambda_G(x, y) \geq 2$ for all pairs $x, y \in V$. Then for any edge $(s, u) \in E$ there is an edge $(s, v) \in E$ such that $\lambda_{G/(u,v;1)}(x,y) = \lambda_G(x,y)$ holds for all pairs $x, y \in V - s$.

This says that if $c_G(s)$ is even, there always exists a complete splitting at s such that the resulting graph G' satisfies $\lambda_{G'-s}(x,y) = \lambda_G(x,y)$ for every pair of $x,y \in V-s$.

3 EVAP(4,3) for a 2-Vertex-Connected Graph

We now present a polynomial time algorithm for EVAP(4,3) for a given 2-vertex-connected graph.

Let $\beta(G) \equiv \max\{p(G-S)-1+\max[0,\max\{4-c_G(v_1),4-c_G(v_2)\}\} \mid S=\{v_1,v_2\}$ is a separating pair in G]. To make a graph G (4,3)-connected, it is necessary to add at least $4-c_G(X)$ edges to $E_G(X,V-X)$ for each cut X, to add at least $3-|\Gamma_G(X)|$ edges to $E_G(X,V-X)$ for each cut X with $V-X-\Gamma_G(X)\neq\emptyset$, and to add at least $p(G-S)-1+\max[0,\max\{4-c_G(v_1),4-c_G(v_2)\}\}]$ edges to connect components of G-S for each separating pair $S=\{v_1,v_2\}$ in G.

$$\begin{array}{l} \textbf{Lower Bound: } \gamma(G) \equiv \max\{\lceil\alpha(G)/2\rceil,\beta(G)\}, \text{ where } \\ \alpha(G) = \max\left\{\sum_{i=1}^p (4-c_G(X_i)) + \sum_{i=p+1}^q (3-|\Gamma_G(X_i)|)\right\} \\ \text{and the max is taken over all subpartitions } \{X_1,\cdots,X_p,X_{p+1},\cdots,X_q\} \text{ of } V \text{ such that } q \geq p \geq 0 \text{ and } V - X_i - \Gamma_G(X_i) \neq \emptyset, \ i = p+1,\cdots,q. \end{array} \right.$$

For a subset F of edges in a graph G, we say that two edge $e_1 = (u_1, w_1)$ and $e_2 = (u_2, w_2)$ are switched in F if we delete e_1 and e_2 from F, and add edges (u_1, u_2) and (w_1, w_2) to F, and that an edge $e_1 = (u_1, w_1)$ is shifted in F, if we delete e_1 from F and add an edge (u_1, w_2) $(w_1 \neq w_2)$ to F. The sketch of our algorithm for solving the EVAP(4,3) for a 2-vertex-connected graph, denoted by Algorithm EVA3, is given as follows.

Algorithm EVA3

Input: An undirected 2-vertex-connected multigraph G = (V, E).

Output: An undirected multigraph $G^* = G + F$ with $\lambda(G^*) \geq 4$ and $\kappa(G^*) \geq 3$ where the size of new edge set F is the minimum.

Step I. (Adding vertex s and associated edges):

After adding a new vertex s, we can add a set F_1 of new edges between s and V so that $|F_1|=\alpha(G)$ and

the resulting graph $G_1 = (V \cup \{s\}, E \cup F_1)$ satisfies $c_{G_1}(X) \ge 4$ for all cut $X \subset V$, $|\Gamma_{G_1}(X \cup s)| \ge 3$ for all cut $X \subset V$ with $V - X - \Gamma_{G_1}(X) \ne \emptyset$.

Step II. (Edge-splitting): We find a complete edge-splitting at s in G_1 which preserves the 4-edge-connectivity, according to Theorem 2.1. Ignore the isolated vertex s and denote the resulting graph $G_2 = (V, E \cup F_2)$.

If G_2 is also 3-vertex-connected, then we are done because $|F_2| = |F_1|/2 = \lceil \alpha(G)/2 \rceil$ implies that G_2 is optimally augmented by lower bound $\lceil \alpha(G)/2 \rceil$. Otherwise, go to Step III.

Step III. (Switching and Shifting edges): Now G_2 has separating pairs.

We repeat switching or shifting edges in F_2 so that the resulting graph G_2' satisfies the following properties:

- · the 4 edge-connectivity,
- $\kappa_{G_2}(x,y) \geq 3$ for all $x,y \in V$ with $\kappa_{G_2}(x,y) \geq 3$.
- $p(G_2' S) < p(G_2 S)$ for some separating pairs S.

Let $G_3 = (V, E \cup F_3)$ be the resulting graph, where F_3 denotes the final F_2 . Then in G_3 , there is no separating pair S_1, S_2 such that $S_1 \cap S_2 = \emptyset$.

If G_3 has no separating pair, then we are done, since $|F_3| = \lceil \alpha(G)/2 \rceil$ implies that G_3 is optimally augmented. Otherwise, go to Step IV.

Step IV. (Edge augmentation): Now one of the following (i) or (ii) satisfy:

- (i) We can make G_3 3-vertex-connected by adding a set F_4 of $\beta(G) \lceil \alpha(G)/2 \rceil$ new edges, i.e., we are done since $|F_3| + |F_4| = \beta(G)$ implies that the resulting graph is optimally augmented by lower bound $\beta(G)$.
- (ii) The input graph G can be made (4,3)-connected by adding at most four edges.

Theorem 3.1 For a 2-vertex-connected multigraph G, G can be made (4,3)-connected by adding $\gamma(G) = \max\{\lceil \alpha(G)/2\rceil, \beta(G)\}$ new edges or at most four new edges in polynomial time. \square

References

- [1] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, N. J., 1962.
- [2] T. Ishii, H. Nagamochi, and T. Ibaraki, Augmenting edge-connectivity and vertex-connectivity simultaneously, master's thesis, Department of Applied Mathematics and Physics, Kyoto University, 1997.
- [3] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., Vol.3, 1978, pp. 145-164.