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A (T, S) Inventory/Production System
~with Limited Production Capacity and Uncertain Demands
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1 Introduction

We consider a single-item, periodic-review in-
ventory/production model with uncertain de-
mands in which a production capacity is limited
per period. Demands D,, in period n are rep-
resented by independent, identically distributed
(IID) nonnegative random variables, and a (T, S)
inventory control policy is considered. Under this
policy, the inventory position (IP; physical stock
plus lots on order minus backorders) is reviewed
in every T units of time and, at a moment of
review, a replenishment order is placed to the
production facility in order to raise the IP to a
fixed level S > 0. An order will be delivered at
the end of each period. But, because of capacity
constraint, the leadtime is generally random and
the entire order may not be filled simultaneously.
Demands are satisfied by on-hand inventory on
a first-come-first-serve (FCFS) basis and excess
demands are backordered.

Traditionally, performance measures of inven-
tory systems are calculated in terms of cost.
However, in certain industries, customer wait-
ing times have become more important as perfor-
mance measure (see, e.g., [1]). Prior treatments
of this problem assume that the supply process
is ezogenous, as described in [2]; the evolution of
the supply system is independent of demands and
replenishment orders. However, consider a manu-
-facturer with a few sales subsidiaries, where each
subsidiary controls its own inventory system and
total orders from the subsidiaries to the manu-
facturer are close to the production capacity per
period. This scenario is typical in Japanese man-
ufacturers. In such cases, since each order con-
tributes to the fluctuation of the manufacturer’s
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total workload, the supply process should be in-
cluded as a part of the inventory model so that
the workload determines the leadtime of a replen-
ishment order. ’

2 The Associated MC

Because our concern is not optimal values of
T, we henceforth fix T = 1 by defining the time
unit appropriately. The time interval (n — 1,n]
is called the nth period. The following notation
will be used for the inventory system:

Jn =
R, =

the inventory/backorder level;
the quantities ordered.

Replenishment orders are produced in the pro-
duction system with a finite capacity ¢ > 0:

Qn =
P, =

the remainings to be produced;
the number produced during n.

We note that P, = min{Qn, c}.
The inventory/backorder level satisfies

Jnt1 = Jn+min{c, S — Jp} — Dpy1  (2.1)

Since the demands Dy, are IID, {J,} is Markovian
with the state space {---,—1,0,1,---,5 —1,S}.

Next, define the shortfall for inventory at the
end of period n: Y, =S — J,. Then Y, = Qn41.
This is so, because the (T, S) policy tries to keep
the IP to the fixed level S. The process {Y,}
is also Markovian with the state space N; =
{0,1,2,---} that satisfies

Yn41 = max{0, Y — ¢} + Dpy1 (2.2)

It should be noted that the recursion (2.2) does
not include the order-up-to-level S. This is the
advantage to consider the shortfall Y, rather than
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Jn directly. Note that the recursion (2.2) is the
same as the queueing process of a bulk-arrival,
batch-service M/D/1 queue when observed just
after service completion. Hence, {Y,} is stable
as long as the production capacity exceeds the
mean demand, i.e. ¢ > E{D}. (We assume that
the production system is not subject to failure.)

The next result is simple but important to char-
acterize the (T',S) inventory/production system
(cf. the Kanban system).

Propoéition 2.1 We have Ry 1 = Dy, for all
n. That is, the ordering policy is to order so as
to salisfy the previous demand.

3 System Characteristics

In order to consider the tramsient behavior of
system characteristics, we define w(n) = {m(n)}
where 7 (n) = P{Y, = k}. It is important to be
able to investigate the transient behavior, because
we can then understand the impact of the initial
inventory/backorder level on the system charac-
teristics. The transition matrix of {Y,} is given
by P. It is well known that w(n + 1) = w(n)P.

Let L, denote the leadtime of an order made
at the beginning of period n. The leadtime is de-
fined as the difference between periods in which
an order is made and is fully delivered. The or-
der made at that period will be fully delivered
after (Qn/c| periods, where [z] denotes the small-
est integer not less than z. Hence the leadtime
probability is given by

Plke< Yo < (k+1)c, Dp> 0
1) = PV E 1 D> 0

Note that the leadtime is considered only under
“the condition D, > 0. After an algebra, we have

II(n) — dollpe(n — 1)

1—-dy ’
where IIj(n) = E’/i:o m(n), and £x(n + 1) are
The leadtime distribution
{€x(n)} does not depend on the order-up-to-level

fo('n. + l) =

obtained similarly.

S. When ¢ = 00, it is clear that £o(n) = 1, mean-
ing L, = 0 almost surely.

Next consider the waiting time distributions.
The waiting time is defined as the difference be-
tween periods in which positive demands arrive
and are fully satisfied. The waiting time for a
customer who arrives during period n is denoted
by W,. It is readily seen that, given D, > 0,
W, = 0 if and only if J, > 0 while W,, = k > 0 if
and only if [~J,/¢] = k. Hence the waiting time
probability is given by ‘

wi(n) = P{[max{—Jn, 0}/c] = k|D,, > 0}
After an algebra, we then have

wntr) = Ls) = ol
and wi(n) are obtained similarly. It should be

noted that, in contrast to the leadtime distribu-
tion, the waiting time distribution {wg(n)} de-
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pends on the order-up-to-level S too.

For random variables A and B, A is said to
be stochastically greater than B if E[f(A)] >
E|[f(B)] for all nondecreasing functions f. In this
case, we write A >4 B.

In the following, we shall denote by L,(c) and
Wha(c, S) the leadtime and the waiting time when
the production capacity is ¢ and the order-up-to-
level is S. ‘ ‘

Proposition 3.1 Suppose dg = 0. Then,
Lpti(c) 25t Luy1(c+1) and Wy(e,S) >st Wa(c+
1,S) for each fized S.

Proposition 3.2 Suppose dg = 0.
W(c,S) > W(e,S + 1) for each fized c.

Then,

Other monotonicity results as well as a numer-
ical example will be reported in the presentation.
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