目標計画法から見た DEA-判別分析法

01205520 東京理科大学

末吉 俊幸

SUEYOSHI Toshiyuki

02302130

東京理科大学

*多賀谷 英明

TAGAYA Hideaki

02900270

東京理科大学 渡辺 伸輔

WATANABE Shinsuke

1. はじめに

本研究では,目標計画法の視点から判別分析法と DEA (Data Envelopment Analysis) の相違点と類似点 を明らかにする.そしてそれらの特徴を基にして, DEA の長所を判別分析法に組み込んだ新しいモデル "DEA-判別分析法" を提唱する.

2. 判別分析法

判別分析法は、大きく分けて統計的な手法と目標計画法ベースの手法がある。本研究では、目標計画法の視点から判別分析法を再検討するため、目標計画法ベースの手法に着目する。目標計画法ベースの手法は複数あるが、その中でも Freed や Glover が提唱した MSD (Minimize Sum of Deviations) モデルは、計算上の実用性から数多く実用されている。今、n個の DMU (Decision Making Units: j=1,...,n) があるとし、それぞれ DMU は k 個の要因 (i=1,...,k) で特徴づけられているとすると、MSD モデルは次のようにモデル化される.

Min
$$\sum_{j \in G_1} S_j^+ + \sum_{j \in G_2} S_j^-$$
 (1)
s.t. $\sum_{i=1}^k \alpha_i z_{ij} + S_j^+ \ge d$, $j \in G_1$ $\sum_{i=1}^k \alpha_i z_{ij} - S_j^- \le d - \eta$, $j \in G_2$ S_i^+ , $S_i^- \ge 0$, α_i , $d: 制約なし$.

ただし、 α_i は各要因の重み付けを表す判別係数、dは境界値、 S_j^+ 、 S_j^- はそれぞれのグループのスラック変数、 η はグループ間に隔たりを設けるための正の小数であり、 η を設けることにより、自明解 $(\alpha_i^*=0,d^*=0)$ を避けることができる。(1) 式に

より得られた α_i^* , \mathbf{d}^* より,新たにサンプルされた $DMU_h \text{ は } (\sum_{i=1}^k \alpha_i^* z_{ih}) \text{ と } \mathbf{d}^*$ を比較することで,どち

らのグループに属するか判別できる.

ここで、(1) 式と目標計画法の一般モデル

Min
$$\sum_{j=1}^{n} S_{j}^{+} + \sum_{j=1}^{n} S_{j}^{-}$$
 (2)
s.t. $\sum_{i=1}^{k} \alpha_{i} z_{ij} + S_{j}^{+} - S_{j}^{-} = d_{j}$, $j = 1, ..., n$
 $S_{j}^{+}, S_{j}^{-} \ge 0$, α : 制約なし.

を比較すると、(2) 式では両側のスラックを最小化しているが、(1) 式は、片側のスラックのみを最小化している点などの相違点がある。これは、(2) 式では目標値 \mathbf{d}_i からの隔たりを最小化している一方、

(1) 式は誤判別を最小化しているためである.

3. **DEA**-加法モデル

DEA-加法モデルは Charnes などにより 1985 年に 提唱されたモデルであり、 DMU_h について次のよう にモデル化される.

Max
$$\sum_{i=1}^{k} S_{j}^{+} + \sum_{r=1}^{s} S_{r}^{-}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} \lambda_{j} + S_{i}^{+} = x_{ih}, \quad i = 1,..., k$$

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} - S_{r}^{-} = y_{rh}, \quad r = 1,..., s$$

$$\sum_{j=1}^{n} \lambda_{i} = 1,$$

$$S_{i}^{+}, S_{r}^{-}, \lambda_{j} \ge 0.$$

ただし、 x_{ij} と y_{rj} はそれぞれ DMU_j の i 番目の入力項目,r 番目の出力項目を表わしている.ここで (3)

式と(2)式を比較すると,(3)式では DMU は $(\sum_{j=1}^{n} \lambda_{j} = 1)$ で凸結合されているが,(2)式では,

 $(\sum_{i=1}^k \alpha_i z_{ij})$ で結合されている.この他にもいくつかの

相違点はあるが、総じて見ると、DEA-加法モデルは目標計画法の特殊形と考えられる。

4. DEA-判別分析法

本研究では、判別分析法 (MSD モデル) に DEA の長所、すなわち DMU を凸結合で結ぶという特徴を組み込んだ新しいモデル DEA-判別分析法を提唱する. DEA-判別分析法は次の2段階に分けられる.

Stage 1 (クラス分けとオーバーラップの明確化)

$$\begin{split} &\text{Min} \quad \sum_{j \in G_1} S_{1j}^+ + \sum_{j \in G_2} S_{2j}^- \\ &\text{s.t.} \quad \sum_{i=1}^k z_{ij} \alpha_i + S_{1j}^+ - S_{1j}^- = d \;, \qquad j \in G_1 \\ &\quad \sum_{i=1}^k z_{ij} \beta_i + S_{2j}^+ - S_{2j}^- = d - \eta \;, \quad j \in G_2 \\ &\quad \sum_{i=1}^k \alpha_i = 1 \;, \\ &\quad \sum_{i=1}^k \beta_i = 1 \;, \end{split}$$

(4) 式により得られた α_i^* , β_i^* , d^* により,新たにサンプルされた DMU_h は次のように判別できる.

(b)
$$\sum_{\substack{i=1\\j \in \mathcal{S}}}^{k} z_{ij} \alpha_i^* \ge d^*$$
, $\sum_{i=1}^{k} z_{ij} \beta_i^* \ge d^* \mathcal{O}$ とき, G_1 に属

(c)
$$\sum_{i=1}^{k} z_{ij} \alpha_{i}^{*} < d^{*}$$
, $\sum_{i=1}^{k} z_{ij} \beta_{i}^{*} < d^{*}$ のとき, G_{2} に属する.

(a) の "オーバーラップ上にある" ということは, その DMU が G_1 , G_2 両グループに属していること を意味している.こういった場合,専門家に意見を 聞き判別することが妥当であるが,それができない 場合などの代替案として,次のモデルを提唱する.

Stage 2 (オーバーラップの対処)

このモデルは、(4) 式において $\alpha_i = \beta_i$ としたものであり、その結果1つの判別関数で判別している.

(5) 式により得られた λ_i^* , d^* により,新たにサンプルされた DMU $_b$ は次のように判別できる.

(a)
$$\sum_{i=1}^{k} z_{ih} \lambda_i^* \ge d^* \mathcal{O}$$
とき、 G_1 に属する、(b) $\sum_{i=1}^{k} z_{ih} \lambda_i^* < d^* \mathcal{O}$ とき、 G_2 に属する.

5. 実証研究と結論

DEA-判別分析法と他の手法を比較するため、日本の銀行のランキングデータを使用し、比較検討を行なった分析結果を発表する.

本研究では新しい判別分析モデル, DEA-判別分析法を提唱した. DEA-判別分析法はまだ研究の初期段階にあり、これからさらなる発展が期待できる.

6. 参考文献

Toshiyuki Sueyoshi, "DEA-Discriminant Analysis in the View of Goal Programming," European Journal of Operational Research (1998).