Some Mathematical Programming Issues in DEA

01302170 埼玉大学 煮 TONE Kaoru 刀根

1 Introduction

In this paper, we will analyze the equivalence of the original ratio form fractional program for the CCR model and the derived linear program under the semi-positive data set assumption. Then, the uniqueness issues of the solutions will be discussed in detail.

2 Fractional Program with Semipositive Data Set

$$(FP_o) \max \theta = uy_o/vx_o \tag{1}$$

st.
$$uy_j/vx_j \leq 1 (j=1,\ldots,n)$$
 (2)

$$v \geq 0, u \geq 0. \tag{3}$$

$$(LP_o) \max \theta = uy_o \tag{4}$$

$$st. \quad \boldsymbol{v}\boldsymbol{x}_o = 1 \tag{5}$$

$$uY \leq vX, v \geq 0, u \geq 0.$$
 (6)

$$(DLP_o) \min \theta$$
 (7)

$$st. \quad \theta x_o = X \lambda + s_x \tag{8}$$

$$y_o = Y\lambda - s_y \tag{9}$$

$$\lambda > 0, s_x > 0, s_y > 0 \qquad (10)$$

Definition 1 (Semi-positive Data Set) x_i and y_i (j = 1, ..., n) are nonnegative and nonzero.

When DMU_o has no Slacks

If a DMU_o has an optimal max-slack solution ($\theta =$ $\theta^*, \lambda = \lambda^*, s_x^* = 0, s_y^* = 0$, then, by the strong theorem of complementarity, there exists a positive optimal solution (v^*, u^*) to (LP_o) and it holds

$$v^*X \geq u^*Y > 0.$$

Thus, for (v^*, u^*) , the ratio form

$$\frac{u^*y_j}{v^*x_j}$$

has a definite value for every DMU. Therefore, for DMU_o , (LP_o) is equivalent to (FP_o) .

When DMU_o has Slacks

If DMU_o has an optimal max-slack solution with $s_x^* \neq 0$ and/or $s_y^* \neq 0$, we replace (FP_o) with

$$(\overline{FP}_o) \qquad \max \frac{uy_o}{v_o x_o} \tag{11}$$

$$(\overline{FP}_o)$$
 max $\frac{\boldsymbol{u}\boldsymbol{y}_o}{\boldsymbol{v}_o\boldsymbol{x}_o}$ (11)
subject to $\frac{\boldsymbol{u}\boldsymbol{y}_j}{\boldsymbol{v}\boldsymbol{x}_j} \leq 1 \ (\forall j)$ (12)

$$v \ge \varepsilon e, \quad u \ge \varepsilon e, \tag{13}$$

where e is a row vector with all elements equal to 1 and the symbol ε represents the infinitesimal (small) positive number. Thus, the fractional terms in (\overline{FP}_{0}) have definite values by the semipositivity assumption on X.

The derived (\overline{LP}_o) and (\overline{DLP}_o) turn out to have the added constraint $v \geq \varepsilon e$, $u \geq \varepsilon e$ and the objective min $\theta - \varepsilon(es_x + es_y)$, respectively. Since ε is infinitesimally small, (\overline{DLP}_o) has the same optimal max-slack solution $(\theta^*, \lambda^*, s_x^*, s_y^*)$ with (DLP_o) . For a feasible solution (\bar{v}, \bar{u}) for (\overline{LP}_o) , the optimality conditions are:

$$\label{eq:continuous_signal} \text{if } s_{x_j}^* > 0, \quad \text{then } \bar{v}_j = \varepsilon$$
 and

$$\text{if } s_{y_j}^* > 0, \quad \text{then } \bar{u}_j = \varepsilon.$$

As arepsilon approaches zero, the $(ar{m{v}},ar{m{u}})$ converges to an optimal solution (v^*, u^*) of (LP_o) as its limit.

Thus, it can be concluded that we are solving the following supremum (sup) programming problem (SP_o) in the positive orthant of (v, u), instead of (FP_o) .

$$(SP_o) \qquad \sup \frac{\boldsymbol{u}\boldsymbol{y}_o}{\boldsymbol{v}_o\boldsymbol{x}_o} \tag{14}$$

$$(SP_o)$$
 sup $\frac{\boldsymbol{u}\boldsymbol{y}_o}{\boldsymbol{v}_o\boldsymbol{x}_o}$ (14)
subject to $\frac{\boldsymbol{u}\boldsymbol{y}_j}{\boldsymbol{v}\boldsymbol{x}_j} \leq 1 \ (j=1,\ldots,n)(15)$

$$v > 0, \quad u \quad > \quad 0. \tag{16}$$

On the Uniqueness of the Solutions

Phase I Objective min θ (17)Phase II Objective $\max \omega = w_x s_x + w_y s_y$

3.1 General Scheme of LP Computation

The LP problem (DLP'_o) can be formulated as:

Phase I objective min
$$z_1 = cx$$
 (18)
Phase II objective min $z_2 = dx$ (19)
subject to $Ax = b$ (20)
 $x \geq 0$. (21)

Let a submatrix B of A be an optimal basis for Phase II LP and R be the nonbasic part of A.

Phase I objective Phase II objective	θ^* $-\omega^*$	0	$-\bar{c}$ $-d$
	Ī	I	$B^{-1}R$

Definition 2 (Degeneracy) An optimal basis B is called

- 1. b-nondegenerate if $\bar{b} > 0$, otherwise b-degenerate,
- 2. c-nondegenerate if $\bar{c} > 0$, otherwise c-degenerate, and
- 3. d-nondegenerate if $\bar{d}_j > 0$ for all $j \in R$ with $\bar{c}_j = 0$, and d-degenerate if for some $j \in R$, $\bar{d}_j = 0$ and $\bar{c}_j = 0$.

3.2 The 'c-nondegenerate' Case

In this case, all nonbasic variables have negative simplex criteria in the c-row of the optimal tableau. Thus, x_j $(j \in R)$ cannot have a positive value in every optimal solution and hence $((x^B)^* = \bar{b}, (x^R)^* = 0)$ is the only optimal solution. In CCR terminology, the optimal solution $(\theta^*, \lambda^*, s_x^*, s_y^*)$ is unique. We will now discuss the b-degeneracy issue in this case.

(i) When the basis B is b-nondegenerate.

In this case, the basis B is the only optimal basis and both (DLP_o) and (LP_o) have unique optimal solutions.

(ii) When the basis B is b-degenerate.

In this case, we have only one optimal solution $(\lambda^*, s_x^*, s_y^*)$ for (DLP_o) . However, the optimal solution (v^*, u^*) is not necessarily unique.

3.3 The 'c-degenerate but d-nondegenerate' Case

In this case, the optimal basic solution $(\lambda^*, s_x^*, s_y^*)$ corresponds to the unique vertex that maximizes

 $\omega = es_x + es_y$ in the (DLP_o) feasible region with $\theta = \theta^*$. Thus, the solution is unique. However, this uniqueness depends on the objective function form of Phase II.

3.4 The 'c-degenerate and d-degenerate' Case

In this case, the optimal solution $(\lambda^*, s_x^*, s_y^*)$ is seemingly not unique. However, we should be careful in deciding the existence of substantially multiple optimal solutions. For this purpose, we consider a Phase III LP, based on an optimal basis B and its optimal solution $(\lambda^*, s_x^*, s_y^*)$ for Phase II, as follows.

We maximize the objective function:

$$\eta = \sum_{j} \lambda_{j} \quad (j \in R \text{ with } \bar{c}_{j} = 0 \text{ and } \bar{d}_{j} = 0)$$

$$+ \sum_{j} \lambda_{j} \quad (j \in B \text{ with } \lambda_{j}^{*} = 0), \qquad (22)$$

subject to the constraints of (DLP_o) , added by $\theta = \theta^*$ and $es_x + es_y = es_x^* + es_y^*$.

Let the optimal value of η be η^* . Then, if $\eta^* > 0$, it is found that (DLP_o) has multiple optimal solutions. On the other hand, if $\eta^* = 0$, then $(\lambda^*, s_x^*, s_y^*)$ is the only one solution of (DLP_o) .

3.5 Summary of the Degeneracy and Uniqueness Issues

Uniqueness and degeneracy are summarized in Table 1 and Table 2, where in Table 2, 'not unique' means 'not necessarily unique'.

Table 1: Degeneracy and Uniqueness in (DLP_o)

	c-nond.	c-deg.		
		d-nond.	d-deg.	
			$\eta^* = 0$	$\eta^* > 0$
(λ^*,s^*)	unique	unique	unique	not unique

Table 2: Degeneracy and Uniqueness in (LP_o)

	b-nondegenerate	b-degenerate
(v^*, u^*)	unique	not unique

Reference [1] Charnes, Cooper and Thrall, JPA, 2, 197-237, 1991.