1—E—N

19T HAA RV —Va v X o ¥ —FER
KERAREKR

~ Some Mathematical Programming Issues in DEA

01302170 BEK%F

1 Introduction

In this paper, we will analyze the equivalence of
the original ratio form fractional program for the
CCR model and the derived linear program under
the semi-positive data set assumption. Then, the
uniqueness issues of the solutions will be discussed
in detail.

2 Fractional Program with
Semipositive Data Set

(FP,) maxf = wuy,/vz, (1)

st. uy;fvz; < 1(7=1,...,n) (2)

v > 0, u>0. (3)

(LP,) maxf = wuy, (4)

st. vz, = 1 (5)

uY < vX, v>0, u>0. (6)

(DLP,) min6 (M

st. bz, XA+ 38, (8)

Yo = YA- Sy (9)

A > 0,8,>0,8,>0 (10)

Definition 1 (Semi-positive Data Set) z; and
y; (U= 1,...,m) are nonnegative and nonzero.

2.1 When DMU, has no Slacks

If a DMU, has an optimal max-slack solution (6 =
6*,A = A%, s; = 0,8y = 0), then, by the strong
theorem of complementarity, there exists a positive
optimal solution (v*,u*) to (LP,) and it holds
v*X >u'Y > 0.
Thus, for (v*, u*), the ratio form
; ay,
v*z;

has a definite value for every DMU. Therefore, for
DMU,, (LP,) is equivalent to (FP,).
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2.2 When DMU, has Slacks

If DMU, has an optimal max-slack solution with
8; # 0 and/or sy # 0, we replace (FP,) with

—_ uy
FP 2 11
(FP.)  max 22 (1)
. uy; .
subject to —L < 1 (¥;) (12)
v:z:,-
v>ce, u > ce, (13)

where e is a row vector with all elements equal
to 1 and the symbol e represents the infinitesimal
(small) positive number. Thus, the fractional terms
in (FP,) have definite values by the semipositivity
assumption on X.

The derived (LP,) and (DLP,) turn out to
have the added constraint v > ce, u > ce
and the objective min 6§ — £(es; + esy), respec-
tively. Since ¢ is infinitesimally small, (DLP,) has
the same optimal max-slack solution (6%, A", 57, s})
with (DLP,). For a feasible solution (¥,#) for
(LP,), the optimality conditions are:

if s3>0, then 7;=¢
and
if s;j >0, then %; =e.
As ¢ approaches zero, the (¥, #%) converges to an
optimal solution (v*,u*) of (LP,) as its limit.

Thus, it can be concluded that we are solving

the following supremum (sup) programming prob-

lem (SP,) in the positive orthant of (v, u), instead
of (FP,).

uy
SP, 2 14
(sB) sup 2L (14)
u .
subject to ) < 1 (j=1,...,n)15)
VI,
v>0, u > 0. (16)

3 On the Uniqueness of the
Solutions

Phase I Objective min & (17)

Phase II Objectivemaxw = w8, + wysy
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3.1 General Scheme of LP Computa-
- tion

The LP problem (DLP)) can be formulated as:

Phase I objective min 2z, = cz (18)
Phase I objective min 2z, = dz (19)
subject to Az = b (20)

z > 0 (21

Let a submatrix B of A be an optimal basis for

Phase II LP and R be the nonbasic part of 4.

Phase I objective 6* 0 -
Phase II objective | —w* o —-d
b 1 B-'R

Definition 2 (Degeneracy)
An optimal basis B 1s called

1. b-nondegenerate if b > O,
degenerate,

otherwise b-

2. c-nondegenerate otherwise c-

degenerate, and

if ¢ > 0,

3. d-nondegenerate if c_ij > 0 for all j € R with
¢j = 0, and d-degenerate if for some j € R,
d; =0 and ¢; =0.

3.2 The ‘c—nondegenerate’ Case

In this case, all nonbasic variables have negative
simplex criteria in the c-row of the optimal tableau.
Thus, z; (j € R) cannot have a positive value
in every optimal solution and hence ((zB)* =
b, (z®)* = 0) is the only optimal solution. In CCR
terminology, the optimal solution (8%, A%, 83, 8}) is
unique. We will now discuss the b-degeneracy issue
in this case.

(i) When the basis B is b-nondegenerate.

In this case, the basis B is the only optimal basis
and both (DLP,) and (LP,) have unique optimal
solutions.”

(ii) When the basis B is b-degenerate.

In this case, we have only one optimal solution
(A%, 83, 8y) for (DLP,). However, the optimal so-
lution (v*,u*) is not necessarily unique.

3.3 The ‘c—degenerate but
d—nondegenerate’ Case

In this case, the optimal basic solution (A%, s3,3})
corresponds to the unique vertex that maximizes
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w = e8; + es, in the (DLP,) feasible region with
6 = 6*. Thus, the solution is unique. However, this
uniqueness depends on the objective function form

of Phase II.

3.4 The ‘c—degenerate and
d—degenerate’ Case

In this case, the optimal solution (A%, s3,s;) is
seemingly not unique. However, we should be care-
ful in deciding the existence of substantially multi-
ple optimal solutions. For this purpose, we consider
a Phase ITII LP, based on an optimal basis B and its

- optimal solution (A%, 87, 83) for Phase I, as follows.

We maximize the objective function :

n = A (j€Rwithg;=0andd,; =0)
J
+3 ) (j € B with A} =0), (22)
J

subject to the constraints of (DLP,), added by § =
0* and es; + esy = es; + esy.

Let the optimal value of 5 be #*. Then, if
n* > 0, it is found that (DLP,) has multiple op-
timal solutions. On the other hand, if * = 0, then
(A%, 83,8;) is the only one solution of (DLF,).

3.5 Summary of the Degeneracy and
Uniqueness Issues

Uniqueness and degeneracy are summarized in Ta-
ble 1 and Table 2, where in Table 2, ‘not unique’
means ‘not necessarily unique’.

- Table 1: Degeneracy and Uniqueness in (DLP,)

c-nond. c-deg.

d-nond. d-deg.

7°=0]7n">0

ﬁ/\*, s*) || unique

unique [ unique | not unique |

Table 2: Degeneracy and Uniqueness in (LFP,)

[ || b-nondegenerate | b-degenerate |
[ (v*,u*) || unique

| not unique |

Reference [1) Charnes, Cooper and Thrall, JPA,
2, 197-237, 1991.





