Finding the Nucleolus of Assignment Games

01605000 University of Tokyo MATSUI Tomomi

1. Introduction

The nucleolus is a single-point solution concept introduced by Schmeidler in [1]. This paper considers a problem for finding the nucleolus of assignment games. Assignment games with side payments are models of two-sided markets introduced by Shapley and Shubik in [2]. Recently, Solymosi and Raghavan [3] proposed an $O(v^3u)$ time algorithm for finding the nucleolus of an (u, v)-person assignment game with $v \leq u$. We show a characterization of the nucleolus of assignment games, which gives an idea to reduce the size of the problem when u >> v. The time complexity of our algorithm is $O(v^2u + v^4)$.

2. Preliminaries

For any pair of sets $S_1, S_2, B(S_1, S_2)$ denotes the complete bipartite graph with vertex sets S_1, S_2 . An edge set M of $B(S_1, S_2)$ is called a *matching* when every vertex is incident to at most one member in M.

Assignment games are the model of twosided markets, which consist of two disjoint sets of players denoted by U and V. The set of players $U \cup V$ is denoted by P. For each mixed pair of players $(i,j) \in U \times V$, there is associated a non-negative profit a_{ij} . The characteristic function $v: 2^P \to \mathbf{R}$ of the assignment game is defined as follows; (1) if $S \cap U = \emptyset$ or $S \cap V = \emptyset$, then v(S) = 0, (2) otherwise, v(S) is equal to the weight of maximum weight matching in the graph $B(S \cap U, S \cap V)$ w.r.t. the edgeweight a. In this paper, we denote the assignment game by the triplet (U, V, a). For any payoff vector $x \in \mathbf{R}^P$, the excess of a coalition $S \subseteq P$ is denoted by $e(S, \boldsymbol{x})$. The excess vector $e(\boldsymbol{x})$ with respect to a payoff \boldsymbol{x} is a vector indexed by 2^P whose entries are the excess $e(S, \boldsymbol{x})$. $\forall S \subset P$. The core of the assignment game (U, V, \boldsymbol{a}) is denoted by $\mathcal{C}(U, V, \boldsymbol{a})$. For any vector \boldsymbol{w} indexed by a finite set S, $\theta \boldsymbol{w}$ denotes the sequence of elements in \boldsymbol{w} whose entries are arranged in a non-increasing order. We denote the lexicographic order by \geq_{lex} or \leq_{lex} . The nucleolus of the assignment game is the imputation \boldsymbol{x} satisfying the condition that for any imputation \boldsymbol{x}' , $\theta e(\boldsymbol{x}) \leq_{\text{lex}} \theta e(\boldsymbol{x}')$.

3. The nucleolus of assignment games

We show a characterization of the nucleolus of the assignment game. The family of singleton coalitions $\{\{i\} \mid i \in P\}$ is denoted by P_1 and the family of mixed pair coalitions $\{\{i,j\} \mid (i,j) \in U \times V\}$ is denoted by P_2 . For any payoff vector \boldsymbol{x} , $\boldsymbol{e}_{12}(\boldsymbol{x})$ denotes the vector indexed by $P_1 \cup P_2$ whose entries are excess $\boldsymbol{e}(S,\boldsymbol{x})$ for all $S \in P_1 \cup P_2$.

Theorem 1 A payoff vector $\boldsymbol{x} \in \mathcal{C}(U, V, \boldsymbol{a})$ is the nucleolus if and only if $\forall \boldsymbol{x}' \in \mathcal{C}(U, V, \boldsymbol{a}), \ \theta \boldsymbol{e}_{12}(\boldsymbol{x}) \leq_{\text{lex}} \theta \boldsymbol{e}_{12}(\boldsymbol{x}').$

In the rest of this paper, we assume that $|U| \geq |V|$. Let \overline{M} be a matching in B(U,V) which attains the value v(P) and covers V. Let $\overline{U} \subseteq U$ be the set of vertices which are covered by \overline{M} . Now we construct a new assignment game, called the auxiliary assignment game (with respect to \overline{M}), as follows. We introduce two artificial players i_0, j_0 and we denote the set of players $\overline{U} \cup \{i_0\}$ by U^* and $V \cup \{j_0\}$ by V^* . The auxiliary assignment game is the assignment game with the set of players $U^* \cup V^*$ and the profit vector

b indexed by $U^* \times V^*$ defined by

$$\boldsymbol{b}_{ij} = \begin{cases} a_{ij} & (\text{if } (i,j) \in \overline{U} \times V), \\ 0 & (\text{if } j = j_0), \\ \max\{a_{i'j} \mid i' \in U \setminus \overline{U}\} \\ & (\text{if } i = i_0 \text{ and } j \in V). \end{cases}$$

In the above definition, we assume that $\max\{a_{i'j} \mid i' \in U \setminus \overline{U}\} = 0$, when $\overline{U} = U$. The auxiliary assignment game is the assignment game defined by the triplet $(U^*, V^*, \boldsymbol{b})$. We denote the set of players $U^* \cup V^*$ by P^* . The characteristic function of $(U^*, V^*, \boldsymbol{b})$ is denoted by $v^* : 2^{P^*} \to \mathbf{R}$.

For any payoff vector \boldsymbol{x} in $\mathcal{C}(U, V, \boldsymbol{a})$, the payoff vector $\boldsymbol{f}^{\boldsymbol{a}}(\boldsymbol{x})$ of the auxiliary game is defined by

$$f^{a}(\boldsymbol{x})_{i} = \begin{cases} 0 & \text{if } i = i_{0} \text{ or } i = j_{0}, \\ x_{i} & \text{otherwise,} \end{cases}$$

and for any payoff vector \boldsymbol{y} in $\mathcal{C}(U^*, V^*, \boldsymbol{b})$, the payoff vector $\boldsymbol{f}^{\circ}(\boldsymbol{y})$ of the original game is defined by

$$f^{\circ}(\boldsymbol{y})_{i} = \begin{cases} y_{i} & \text{if } i \in (U \cup V) \setminus \overline{U}, \\ 0 & \text{if } i \in \overline{U}. \end{cases}$$

Then we have the following property.

Lemma 2

If $\boldsymbol{x} \in \mathcal{C}(U, V, \boldsymbol{a})$, then $\boldsymbol{f}^{\mathbf{a}}(\boldsymbol{x}) \in \mathcal{C}(U^{\star}, V^{\star}, \boldsymbol{b})$. If $\boldsymbol{y} \in \mathcal{C}(U^{\star}, V^{\star}, \boldsymbol{b})$, then $\boldsymbol{f}^{\circ}(\boldsymbol{y}) \in \mathcal{C}(U, V, \boldsymbol{a})$.

For any payoff vector $\mathbf{y} \in \mathbf{R}^{P^*}$ and for any coalition $S \subset P^*$, the corresponding excess and the excess vector of the auxiliary assignment game is denoted by $e^*(S, \mathbf{y})$ and $e^*(\mathbf{y})$, respectively. The family of singleton coalitions of P^* is denoted by P_1^* and the family of mixed pair coalitions is denoted by P_2^* . For any payoff vector \mathbf{y} , $e_{12}^*(\mathbf{y})$ and $e_2^*(\mathbf{y})$ denote the vectors obtained by restricting $e^*(\mathbf{y})$ to $P_1^* \cup P_2^*$ and P_2^* , respectively.

Theorem 3 A payoff $\boldsymbol{y} \in \mathcal{C}(U^*, V^*, \boldsymbol{b})$ is the nucleolus of the auxiliary assignment game if and only if $\theta \boldsymbol{e}_2^*(\boldsymbol{y}) \leq_{\text{lex}} \theta \boldsymbol{e}_2^*(\boldsymbol{y}')$, $\forall \boldsymbol{y}' \in \mathcal{C}(U^*, V^*, \boldsymbol{b})$.

<u>Theorem 4</u> A payoff $y \in C(U^*, V^*, b)$ is the nucleolus of the auxiliary assignment game if and only if $f^{\circ}(y)$ is the nucleolus of the original assignment game.

4. Algorithm

By applying Theorem 4, we can reduce the size of the original problem when u =|U| >> |V| = v. Then we can construct an $O(u^2v + v^4)$ time algorithm by employing the algorithm by Solymosi and Raghavan [3] as follows. First, we find a maximum weight matching M by ordinary Hungarian method in $O(v^2u)$ time. Next, we construct the auxiliary assignment game (U^*, V^*, b) in O(u + v) time. Lastly, we find the nucleolus y of the auxiliary assignment game by Solymosi and Raghavan's algorithm in $O((v+1)^4) = O(v^4)$ and output the payoff vector $f^{o}(y)$ as the nucleolus of original assignment game. The overall complexity is $O(v^2u + v^4)$ time.

References

- [1] D. Schmeidler, The nucleolus of a characteristic function game. SIAM Journal Applied Mathematics, 17 1163-1170, 1969.
- [2] L. S. Shapley and M. Shubic. The assignment game: I. the core. International Journal of Gamε Theory, 1 111-130, 1972.
- [3] T. Solymosi and T.E.S. Raghavan. An algorithm for finding the nucleolus of assignment games, *International Journal of Game Theory*, 23 119-143, 1994.
- [4] M. Maschler and B. Peleg and L. S. Shapley, Geometric properties of the kernel, nucleolus, and related solution concepts, *Mathematics of Operations Research*, 4 303-338, 1979.