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1. Introduction

In a Just-In-Time (JIT) production system, a U-
shaped layout and multi-function workers have been
introduced to achieve a single-unit production and con-
veyance (“Tkko-Nagashi,” in Japanese) at a low pro-
duction cost. Recently, the cycle times and the wait-
ing times in a U-shaped line with multi-function work-
ers have been analyzed in some special cases([1] — {3]).
In this report, we derive the upper and lower bounds
of the expected waiting times and cycle times of the
U-shaped production line with a single multi-function
worker where processing times of items, operation
times, and walking times of the worker between ma-
chines are sequences of mutually independent and iden-
tically distributed random variables.
2. A U-shaped Production Line with a Multi-
Function Worker

We counsider a U-shaped production line with a single
multi-function worker. The worker handles machines 1
through K. The facility has enough raw material in
front of machine 1. The material 1s processed at ma-
chines 1 through K sequentially, and departs from the
line as a finished product. Let K = {1,...,K}. When
the worker arrives at machine k£ € K and finds the pro-
cessing of the preceding item completed, he removes it
from machine & € K, sends it to machine k + 1, at-
taches the present item to machine k and switches it
on. After this operation on machine &, he walks to ma-
chine k + 1. If the preceding item is still in process at
his arrival, then he waits for the end of its processing
before operation. It is assumed as an initial condition
that at time 0, one item has been already processed
at each machine. That 1s, in the first cycle the worker
does not wait at all machines. We use the following
notations: for k € K and n € Z = {1,2,...},
I (n): the nth processing time at machine &,
Sk(n): the nth operation time of the worker on ma-
chine &,
Ri(n): the nth walking time from machine k& to ma-
chine k+1 ( K to 1, if k = K),
C(n): the nth cycle time, which is the time interval be-
tween the nth and the (n -+ 1)st arrivals of the worker
at machine 1, [a]t = max{0,a},
R4+ =1{0,00).
We assume that {Iy(n);n € Z}, {Sy(n);n € Z} and
{Ri(n);n € Z} for k € K are sequences of indepen-
dent and identically distributed random variables, and

they are mutually independent.
3. Upper and Lower Bounds of Expected Wait-
ing Times

We denote the waiting time of the worker at machine
k in the nth cycle by Wy(n). Then we have the follow-
ing recursive equations with respect to Wy(n)[3]:

We(1)=0for ke K,

W) = [Ya(n) = 3, ¢, Wy(m) = 35, Wyln = ¥

and

b

2 Wiln) = max [Y;(n) -
J=1 -
for k € K and n > 2, where
Yie(n) = Ig(n — 1) = Rg(n— 1) = 3 0.5, (Sj(n — 1)
+R;(n = 1)) = 32, 1 (S;(n) + Rj(n)).
Theorem 1
For n > 2, it holds that

Y E[Wi(n)] < E[max(Ye(2)]*]

keK keK
and
E[ﬂﬂg[yk(?)]ﬂ <D EWk(n— 1)+ Wi(n)]. ®

keEK

Let the expected values of Ix(n),Sk(n) and Rg(n) be
denoted by i, s¢ and 7 for each & € [{’, respectively.

4. Computations of Upper Bounds

The upper bound E[maxkef([yk(n)]ﬂ shown in Sec-
tion 3 is not easy to compute, because Yi(n), ..., Yk (n)
are mutually dependent. We give the easily computable
upper bounds in the following. We define Zg(n) as
Zg(n) = Rg(n—1)+ Zj>k(5j(" - 1)+ Rj(n—-1))

+ (85(n) + R;(n)),
i<k
and then )

Ye(n) = Iy(n—1) — Zy(n) for k € K and n € Z.
Since Z(n) = (Z1(n),...,Zk(n)) is weakly condition-
ally increasing in sequence (WCIS), they are associ-
ated(see [4]). Using this property we have

P(Ye(n) <y for all k € K) > [ P(Vi(n) <),
keK
for all y € R.. Therefore, it follows that

b [mavi)*] < 8 [matise] .

ke K ke K
where Y}, has the same distribution as Yi(n) for k € K
and Y7, ..., Yk are mutually independent.



5. A Lower Bound of the Expected Cycle Time

In this section, we derive another lower bound of the
expected cycle time. We use the following notations:
For each k € K and n € Z,

Uk(n): the time interval from the nth arrival to the
nth departure of the worker at machine k,

Bg(n): the time interval from the nth departure to the
(n + 1)st arrival of the worker at machine k.

It is clear that for each k € K,

Ur(n) = Wi(n)+Si(n) = [Ix(n—1)—Bk(n—1)]"+Sx(n),
(2)
and
Bi(n) = Re(n) + 3_(Us(n) + R;(n))
>k
+ (Uj(n+ 1)+ Rj(n +1)).
j<k
Then we have
C(n) = +ZB(n——l 2(1—2 (n—1)
K
—Z(j—l n—1)— (K - 2)U(n)
= K-1 K-1
(K = 5)U (3)
j=2 ]:1

We assume that the values of E[Ug(n)], E[Bk(n)]
and E[C(n)] converge to u},b; and C* as n — oo, re-
spectively. In fact, it is shown in [2] that if P(Y3(2) <
0 for all k € K) > 0 then w} = limp_ o E[Wk(n)] ex-
ists for each k € IA{, which implies that there exist uf, b}
and C* by (2). Then from equation (3),

=Y (K-> r—(K=2)) uj.
jEK JEK jEK

It also holds that

C*=ul+b, forallkeK. (4)

From these equations, (uj,b}) is the solution of the
following simultaneous equations: for k € K,

wp +bp =Y b~ (K=1)Y rj—(K=2)) uj.

jEK jEK jeK
We can solve it to obtaln U as
K —2 :
k= =g Z:—<—_er,
JEK

for ke K. (5)
Denote the right hand side of (5) by ux(b), where
b = (by,...,bk). Let v = (u],...,u)) and b* =
(b3,...,b%). Equation (5) implies that
uy = ux(b*), for keK.

(6)

Define ig(z) = E[Si(n)] + E[[Ix(n — 1) — z]*] for
z € Ry. Since [x(n — 1) and Bg(n — 1) are mutually
independent and lim,,_, o, Br(n) >, b}, where >, 1sa
convex order (see [4], for example), from (2) it follows
that for k € K

uy = nlin;0 ElUx(n)] = nlingo Eltug(Be(n — 1))] > ax(b})-

We assume that there is a solution of the following
equations, which is denoted by b = {bx}: for k € K

ﬂk(bk) = ﬂk(b), (7)

If sg and Fy(z) are identical for all k£ € 1%', then by = by

for all k € K and there is a solution of (7). We show
another sufficient condition for the solution of (7) to
exist. Note that equations (7) are equivalent to

1
silbe) = - (®)
k£k
b) + b = e (be) + ——by k£ 9)
gk(k)_i'_[,’_lk_gk(k) ]{___1]0 ':lé ) .
K -2 1
where g, (b) = 45 (b) + s 11)+ 1 er and

j€K
k= mm{lc € [%;Sk + 2 = manER(Sj + ’L])}
Lemma 1 There is a solution {6y} of (9) for each fixed
bg > bg, where by = inf{z; F;(x) > 0}. Moreover, if it

holds that
2 b

N kitk N
where {b)} is a maximal solution of (9) when b; = b;,

i () >

K-1 (10)

then there exists a unique solution {b;} which satisfies
(8) and (9) and hence satisfies (7). B

1 .
71 2.6 b,
~ ~ JER ~

ug(b) + by takes the same value for all k € K.

1 - 3
7 2 b =) =G,
R A jEK
for all k € K, that is, C is the lower bound of the cycle
time C*. @

Since for all k € K
w4+ b — (ur(b) + b)) =

Theorem 2

C™ > u(b) + by =
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