Further Results for Multiclass M/G/1 Queues with Feedback (I)¹

01505150 University of Tsukuba 平山哲治 HIRAYAMA Tetsuji

1 Introduction.

We consider multiclass M/G/1 queues with feedbacks. Customers in the system are classified into J groups. Further group i at station i consists of L_i classes of customers ($i=1,\ldots,J$). A single server serves customers at these stations. Customers are served according to a predetermined scheduling algorithm. After receiving a service, each customer feedbacks to the system or departs from the system.

We consider priority scheduling algorithms in which priority levels are assigned to the stations (groups) such that a station with lower number has a higher priority level. All customers belonging to the same group have the same priority level. Service order of customers in a group is FCFS. Once a customer begins a service, his service is not interrupted by any other customer until he completes his current service stage (non-preemptive).

2 Formulation of the model.

A class α customer at station i is called an (i,α) -customer. Let $\mathcal{S} \equiv \{(i,\alpha): i=1,\ldots,J \text{ and } \alpha=1,\ldots,L_i\}$, and $J_c \equiv \sum_{i=1}^J L_i$. Class (i,α) -customers arrive from outside the system according to an independent Poisson process with rate $\lambda_{i\alpha}$ $((i,\alpha)\in\mathcal{S})$. Let $\lambda_i\equiv\sum_{\alpha=1}^{L_i}\lambda_{i\alpha}$ and $\lambda\equiv\sum_{i=1}^J\lambda_i$. Service times $S_{i\alpha}$ of (i,α) -customers are independently and arbitrarily distributed with mean $E[S_{i\alpha}]$ and second moment $\overline{s^2}_{i\alpha}$. After receiving a service, an (i,α) -customer either feeds back to the system and is changed into a (j,β) -customer with probability $p_{i\alpha,j\beta}$, or departs from the system with probability $p_{i\alpha,00}$ $((i,\alpha),(j,\beta)\in\mathcal{S})$ (For convenience, $p_{00,j\beta}\equiv 0$). Let $\mathbf{P}\equiv (p_{i\alpha,j\beta}:(i,\alpha),(j,\beta)\in\mathcal{S})\in\mathcal{R}^{J_c\times J_c}$.

Let $T_{i\alpha,j}$ be a total amount of service times a customer receives until he departs from the system or enters one of stations $j+1,\ldots,J$ for the first time after completing his current service stage as an (i,α) -customer $((i,\alpha)\in\mathcal{S})$. Let $\overline{T}_{i\alpha,j}$ be its expected value and $\overline{T}_{i\alpha,j}(r)$ be its expected value conditioned on his current remaining service time r at station i. Then

$$\overline{T}_{i\alpha,j} = E[S_{i\alpha}] + \sum_{k=1}^{j} \sum_{\gamma=1}^{L_k} p_{i\alpha,k\gamma} \overline{T}_{k\gamma,j}, \quad j = 0, 1, \dots, J,
\overline{T}_{i\alpha,j}(r) = r + \sum_{k=1}^{j} \sum_{\gamma=1}^{L_k} p_{i\alpha,k\gamma} \overline{T}_{k\gamma,j}, \quad j = 0, 1, \dots, J,$$
(2.1)

for $(i, \alpha) \in \mathcal{S}$ $(\overline{T}_{00,j} \equiv 0)$. Further we define

$$\rho_j^+ \equiv \sum_{i=1}^j \sum_{\alpha=1}^{L_i} \lambda_{i\alpha} \overline{T}_{i\alpha,j}, \quad j = 1, \dots, J,$$
 (2.2)

 $(\rho_0^+ \equiv 0)$. Let us consider the following assumption:

Assumption 1.
$$\mathbf{P}^n \to 0$$
 as $n \to \infty$, and $\rho_J^+ < 1$. \square

Let (ι, a) denote the station-class pair of a customer being served currently, and let r denote his remaining service time. Number of (i, α) -customers in the system, who are not being served, is denoted by $n_{i\alpha}$. Let $\mathbf{n}_i \equiv (n_{i\alpha} : \alpha = 1, \ldots, L_i)$, $\mathbf{n} \equiv (\mathbf{n}_{1}, \ldots, \mathbf{n}_{J})$, and $n_i \equiv \sum_{\alpha=1}^{L_i} n_{i\alpha} \ (i=1,\ldots,J)$. Let v_{im} be a remaining service time of a group i customer at the m^{th} position of its queue. Further let $v_i \equiv \sum_{m=1}^{n_i} v_{im}$, which is often called a work at station i $(i=1,\ldots,J)$. The class of a customer at the m^{th} position of station i is denoted by $c_i(m)$. We define a vector $(\mathbf{v}, \mathbf{n}) \equiv (v_1, \ldots, v_J, n_{11}, \ldots, n_{JL_J})$.

Let us consider the e^{th} customer (\mathbf{c}^e) arrives from outside the system at one of the stations at some epoch σ_0^e (e = 1, 2, ...). Then let σ_k^e be a time epoch just when he would arrive at one of the stations after completing his k^{th} service. Let us consider transition epochs of the system consist of customer arrival epochs and service completion epochs. Then let $(K(t), \Gamma(t)) \in$ \mathcal{S} denote the station-class pair of a customer arrived at the last transition epoch before t $(t \ge 0)$. $(K(t), \Gamma(t)) = (0,0)$ if a customer departs from the system at the transition epoch. The station-class pair of a customer being served at time t is denoted by $(\iota(t), a(t))$, and his remaining service time at time t is denoted by r(t). We assume that $(\iota(\tau), a(\tau)) = (0,0)$ if the system is empty at time τ , or if τ is a service completion epoch. Then let $S_0 \equiv S \cup \{(0,0)\}$. Number of (i,α) customers in the system at time t is denoted by $n_{i\alpha}(t)$. Let $\mathbf{n}_{i\cdot}(t) \equiv (n_{i\alpha}(t) : \alpha = 1, \dots, L_i), \ \mathbf{n}(t) \equiv (\mathbf{n}_{1\cdot}(t), \dots, \mathbf{n}_{J\cdot}(t)),$ and $n_i(t) \equiv \sum_{\alpha=1}^{L_i} n_{i\alpha}(t)$, (i = 1, ..., J). Further let $v_{im}(t)$ be a remaining service time of a group i customer at the m^{th} position of its queue at time t. Further let $v_i(t) \equiv \sum_{m=1}^{n_i(t)} v_{im}(t)$, $\mathbf{V}(t) \equiv (v_{im}(t): i = 1, ..., J \text{ and } m = 1, 2, ...), \text{ and } \mathbf{v}(t) \equiv$ $(v_1(t),\ldots,v_J(t))$. Then we consider the stochastic process $Q \equiv \{\mathbf{Y}(t) \equiv (K(t), \Gamma(t), \iota(t), a(t), r(t), \mathbf{V}(t), \mathbf{n}(t)) : t \ge 0\}.$ Possible values of $\mathbf{Y}(t)$ $(t \geq 0)$ are called *states* whose generic values are denoted by $\mathbf{Y} \equiv (k, \gamma, \iota, a, r, \mathbf{V}, \mathbf{n})$. The state space

¹This research is supported by University of Tsukuba Research Projects.

is denoted by \mathcal{E} .

We would like to derive two types of cost functions defined below. First type of the cost functions represents the mean sojourn times for each class of customers. For e = 1, 2, ..., we define

$$C_{Wi\alpha}^{\epsilon}(t) \equiv \begin{cases} 1, & \text{if } \mathbf{c}^{\epsilon} \text{ is an } (i, \alpha)\text{-customer at } t, \\ 0, & \text{if } \mathbf{c}^{\epsilon} \text{ is not an } (i, \alpha)\text{-customer at } t, \end{cases}$$
 (2.3)

for $(i, \alpha) \in \mathcal{S}$ $(t \ge 0)$. Then we define

$$W_{i\alpha}^{\epsilon} \equiv \int_{0}^{\infty} C_{Wi\alpha}^{\epsilon}(t)dt,$$
 (2.4)

$$W_{i\alpha}(\mathbf{Y}, e, l) \equiv E\left[\int_{\sigma_l^e}^{\infty} C_{Wi\alpha}^e(t) dt | \mathbf{Y}(\sigma_l^e) = \mathbf{Y}\right], \quad (2.5)$$

for $(i, \alpha) \in \mathcal{S}$ and $l = 0, 1, \ldots$, where $\mathbf{Y} = (j, \beta, \iota, a, r, \mathbf{V}, \mathbf{n}) \in \mathcal{E}$ is the state of the system at time σ_l^e . Let us consider \mathbf{c}^e is arrived at the system as a (j, β) -customer at time σ_l^e . His *initial* stay denotes a period from time σ_l^e until he completes his first service at station j just prior to σ_{l+1}^e . The length of his initial stay is called the initial sojourn time. Then for \mathbf{c}^e , we define

$$W_{i\alpha}^{I}(\mathbf{Y}, \epsilon, l) \equiv E \left[\int_{\sigma_{\epsilon}^{\epsilon}}^{\sigma_{l+1}^{\epsilon}} C_{Wi\alpha}^{\epsilon}(t) dt | \mathbf{Y}(\sigma_{l}^{\epsilon}) = \mathbf{Y} \right], \quad (2.6)$$

for $(i, \alpha) \in \mathcal{S}$ and l = 0, 1, ..., where $\mathbf{Y} = (j, \beta, \iota, a, r, \mathbf{V}, \mathbf{n}) \in \mathcal{E}$. Trivially, $W_{i\alpha}^{I}(\mathbf{Y}, e, l) \equiv 0$ for $(i, \alpha) \neq (j, \beta)$. Then we have

$$W_{io}(\mathbf{Y}, e, l) = W_{io}^{I}(\mathbf{Y}, e, l)$$

$$+ E[W_{io}(\mathbf{Y}(\sigma_{l+1}^{\epsilon}), e, l+1) | \mathbf{Y}(\sigma_{l}^{\epsilon}) = \mathbf{Y}],$$
(2.7)

for $(i, \alpha) \in \mathcal{S}$, $\mathbf{Y} \in \mathcal{E}$, $l = 0, 1, \dots$ and $e = 1, 2, \dots$

Second type of the cost functions is related to the expected work at each station. Let $C^{\epsilon}_{Gio}(t)$ be the remaining service time of \mathbf{c}^{ϵ} at time t in his current service stage when he is an (i, α) -customer at t. Then we define

$$G_{i\alpha}^{\epsilon} \equiv \int_{0}^{\infty} C_{Gi\alpha}^{\epsilon}(t)dt,$$
 (2.8)

$$G_{i\alpha}(\mathbf{Y}, e, l) \equiv E\left[\int_{\sigma_l^e}^{\infty} C_{Gi\alpha}^e(t)dt|\mathbf{Y}(\sigma_l^e) = \mathbf{Y}\right],$$
 (2.9)

$$G_{i\alpha}^{I}(\mathbf{Y}, e, l) \equiv E\left[\int_{\sigma_{i}^{e}}^{\sigma_{i+1}^{e}} C_{Gi\alpha}^{e}(t)dt | \mathbf{Y}(\sigma_{l}^{e}) = \mathbf{Y}\right], (2.10)$$

for $(i, \alpha) \in \mathcal{S}$ and l = 0, 1, ..., where $\mathbf{Y} \in \mathcal{E}$. Trivially, $G^l_{i\alpha}(\mathbf{Y}, e, l) \equiv 0$ for $(i, \alpha) \neq (j, \beta)$. Then we have

$$G_{i\alpha}(\mathbf{Y}, e, l) = G_{i\alpha}^{l}(\mathbf{Y}, e, l)$$

$$+E[G_{i\alpha}(\mathbf{Y}(\sigma_{l+1}^{e}), e, l+1)|\mathbf{Y}(\sigma_{l}^{e}) = \mathbf{Y}],$$
(2.11)

for $(i, \alpha) \in \mathcal{S}$, $\mathbf{Y} \in \mathcal{E}$, $l = 0, 1, \dots$ and $e = 1, 2, \dots$

3 Busy period processes.

Let us consider the system in state $\mathbf{Y} = (j, \beta, \iota, a, r, \mathbf{V}, \mathbf{n}) \in \mathcal{E}$ at some transition epoch. We select a set $\mathcal{C} = \mathcal{C}(\mathbf{Y})$ composed of some customers who stay in the system at that time.

For any $\mathbf{Y} \in \mathcal{E}$ and any $\mathcal{C} = \mathcal{C}(\mathbf{Y})$, let $B^j(\mathbf{Y}; \mathcal{C})$ be a (generalized) busy period of the system initiated with state \mathbf{Y} until the first time when the system is cleared of the customers in \mathcal{C} and customers at stations $1, \ldots, j$, except for customers who are initially in the system and are not in \mathcal{C} . We call $B^j(\mathbf{Y}; \mathcal{C})$ a group j busy period initiated with $(\mathbf{Y}; \mathcal{C})$. $B^0(\mathbf{Y}; \mathcal{C})$ denotes a time to complete services of the customers in \mathcal{C} . Then we have

$$E[B^{j}(\mathbf{Y}; \mathcal{C})] = (\sum \sum_{(i,m) \in \mathcal{C}} \overline{T}_{ic,(m),j}(v_{im}))/(1 - \rho_{i}^{+}), \quad (3.1)$$

 $j=1,\ldots,J,$ where $v_{i0}=r$ if \mathcal{C} contains a group ι customer being served $(E[B^0(\mathbf{Y};\mathcal{C})]=\sum\sum_{(i,m)\in\mathcal{C}}v_{im}).$

Let $N_{l\delta}^j$ and $V_{l\delta}^j$ respectively denote the number of (l,δ) -customers and the work of (l,δ) -customers at a completion epoch of a group j busy period $(0 \le j < l \le J \text{ and } (l,\delta) \in \mathcal{S})$. If the busy period is initiated by a (k,γ) -customer, their expected values are denoted by $\overline{N}_{k\gamma,l\delta}^j$ and $\overline{V}_{k\gamma,l\delta}^j$, respectively $((k,\gamma) \in \mathcal{S})$. Then for any $(k,\gamma) \in \mathcal{S}$,

$$\overline{N}_{k\gamma,l\delta}^{j} = \lambda_{l\delta} E[S_{k\gamma}] + p_{k\gamma,l\delta} + \sum_{i=1}^{j} \sum_{\beta=1}^{L_i} \left\{ \lambda_{i\beta} E[S_{k\gamma}] + p_{k\gamma,i\beta} \right\} \overline{N}_{i\beta,l\delta}^{j},$$

$$\overline{V}_{k\gamma,l\delta}^{j} = \left\{\lambda_{l\delta}E[S_{k\gamma}] + p_{k\gamma,l\delta}\right\}E[S_{l\delta}] + \sum_{i=1}^{j}\sum_{\beta=1}^{L_{i}} \left\{\lambda_{i\beta}E[S_{k\gamma}] + p_{k\gamma,i\beta}\right\}\overline{V}_{i\beta,l\delta}^{j},$$

for $0 \le j < l \le J$ and $(l, \delta) \in S$. Now we define

$$\xi_{l\delta}^{j} \equiv \lambda_{l\delta} + \sum_{i=1}^{j} \sum_{\beta=1}^{L_{i}} \lambda_{i\beta} \overline{N}_{i\beta,l\delta}^{j},$$

$$\chi_{00,18}^{j} \equiv 0$$

$$\chi_{k\gamma,l\delta}^{j} \equiv p_{k\gamma,l\delta} + \sum_{i=1}^{j} \sum_{\beta=1}^{L_{i}} p_{k\gamma,i\beta} \overline{N}_{i\beta,l\delta}^{j}, \quad (k,\gamma) \in \mathcal{S},$$
 (3.2)
$$\overline{\xi}_{l\delta}^{j} \equiv \xi_{l\delta}^{j} E[S_{l\delta}],$$

$$\overline{\chi}_{k\gamma,l\delta}^j \equiv \chi_{k\gamma,l\delta}^j E[S_{l\delta}], \quad (k,\gamma) \in \mathcal{S}_0,$$

for $0 \le j < l \le J$ and $(l, \delta) \in S$.

For any $\mathbf{Y} \in \mathcal{E}$ and any $\mathcal{C} = \mathcal{C}(\mathbf{Y})$, let $\overline{N}_{l\delta}^{j}(\mathbf{Y};\mathcal{C})$ and $\overline{V}_{l\delta}^{j}(\mathbf{Y};\mathcal{C})$ ($0 \leq j < l \leq J$ and $(l,\delta) \in \mathcal{S}$) be respectively the number of (l,δ) -customers and the work of (l,δ) -customers at a completion epoch of $B^{j}(\mathbf{Y};\mathcal{C})$. Then we obtain

$$\overline{N}_{l\delta}^{j}(\mathbf{Y}; \mathcal{C}) = \sum_{m \in C_{l\delta}(\mathcal{C})} 1 + \sum_{(i,m)} \sum_{\epsilon \mathcal{C}} \left\{ v_{im} \xi_{l\delta}^{j} + \chi_{i\epsilon_{\epsilon}(m),l\delta}^{j} \right\}, \quad (3.3)$$

$$\overline{V}_{ls}^{j}(\mathbf{Y}; \mathcal{C}) = \sum_{m \in C_{ls}(\mathcal{C})} v_{lm} + \sum_{(i,m)} \sum_{\epsilon \in \mathcal{C}} \left\{ v_{im} \overline{\xi}_{ls}^{j} + \overline{\chi}_{ic_{\epsilon}(m), ls}^{j} \right\}, \quad (3.4)$$

where $C_{l\delta}(\mathcal{C}) = \{m : (l,m) \notin \mathcal{C}, c_l(m) = \delta\}.$

References

- J.L. van den Berg, O.J. Boxma and W.P. Groenendijk, Sojourn times in the M/G/1 queue with deterministic feedback, Commun.Statist.-Stochastic Model 5(1) (1989) 115-129.
- [2] D.H.J. Epema, Mean waiting times in a general feedback queue with priorities, Performance Evaluation 13 (1991) 45-85.
- [3] L. Kleinrock, Queueing Systems Vol.II: Computer Applications, (Wiley, New York, 1976).
- [4] M. Paterok and O. Fischer, Feedback queues with preemptiondistance priorities, Performance Evaluation Review 17 (1989) 136-145.
- B. Simon, Priority queues with feedback, J.ACM 31 (1984) 134-149.
- [6] R.W. Wolff, Stochastic Modeling and the Theory of Queues, (Prentice-Hall, New Jersey, 1989).