Duality for an Optimal Stopping Problem in Dynamic Fuzzy Systems

01702986 北九州大学 吉田祐治 YOSHIDA Yuji

We, in [1,3], defined a dynamic fuzzy system and studied its potential theory. Further, in [2], we analysed the dynamic fuzzy system, using the path-structure. This paper deals with a duality for an optimal stopping problem in [2].

1. Dynamic fuzzy systems

Let S be a metric space. We write a fuzzy set on S by its membership function $\tilde{s}: S \mapsto [0,1]$. For a fuzzy set \tilde{s} on S, its α -cut \tilde{s}_{α} is defined by

$$\tilde{s}_{\alpha} := \{x \in S \mid \tilde{s}(x) \geq \alpha\} \ (\alpha \in (0,1]) \quad \text{and} \quad \tilde{s}_{0} := \operatorname{cl}\{x \in S \mid \tilde{s}(x) > 0\},$$

where cl denotes the closure of a set. $\mathcal{E}(S)$ denotes the set of all countable unions of closed subsets of S, so called F_{σ} -sets. $\mathcal{F}(S)$ is the set of all fuzzy sets \tilde{s} on S satisfying the following conditions (i) and (ii):

- (i) $\tilde{s}_{\alpha} \in \mathcal{E}(S)$ for $\alpha \in [0,1]$;
- (ii) $\bigcap_{\alpha' < \alpha} \tilde{s}_{\alpha'} = \tilde{s}_{\alpha}$ for $\alpha \in (0, 1]$.

And, $\mathcal{G}(S)$ is the set of all fuzzy sets \tilde{s} on S for which there exists a sequence $\{\tilde{s}_n\}_{n=0}^{\infty} \subset \mathcal{F}(S)$ such that $\sup_{n\geq 0} \tilde{s}_n(x) = \tilde{s}(x), \ x \in S$. We use operations Λ and V for real numbers in the sense of the maximum/supremum and the minimum/infremum respectively.

Let a time space $\mathbf{N} := \{0, 1, 2, 3, \dots\}$, and let a state space E be a finite-dimensional Euclidean space. We put a path space by $\Omega := \prod_{k=0}^{\infty} E$ and we represent a path by $\omega = (\omega(0), \omega(1), \omega(2), \dots) \in \Omega$. Define a map $X_n(\omega) := \omega(n)$ for $n \in \mathbf{N}$ and $\omega = (\omega(0), \omega(1), \omega(2), \dots) \in \Omega$. We define σ -fields $\mathcal{M}_n := \sigma(X_0, X_1, \dots, X_n)^{-1}$ for $n \in \mathbf{N}$ and $\mathcal{M} := \sigma(\bigcup_{n \in \mathbf{N}} \mathcal{M}_n)^{-2}$. In this paper, $X := \{X_n\}_{n \in \mathbf{N}}$ is called a dynamic fuzzy system, and the law of the transition is defined as follows. Let \tilde{q} be time-invariant upper semicontinuous fuzzy relations on $E \times E$ satisfying the normality condition: $\sup_{x \in E} \tilde{q}(x,y) = 1$ $(y \in E)$ and $\sup_{y \in E} \tilde{q}(x,y) = 1$ $(x \in E)$. Then \tilde{q} means a transition fuzzy relation. Define $\tilde{P}(\Lambda) := \sup_{\omega \in \Lambda} \bigwedge_{n \in \mathbf{N}} \tilde{q}(X_n(\omega), X_{n+1}(\omega))$ for $\Lambda \in \mathcal{M}$. We define a fuzzy expectation by the possibility measure \tilde{P} : For an initial state $x \in E$ and \mathcal{M} -measurable fuzzy sets $h \in \mathcal{F}(\Omega)$,

$$E_x(h) := \int_{\{\omega \in \Omega : \omega(0) = x\}} h(\omega) \, d\tilde{P}(\omega),$$

where $\oint d\tilde{P}$ is Sugeno integral.

We call a map $\tau: \Omega \to \mathbb{N} \cup \{\infty\}$ an \mathcal{E} -stopping time if $\{\tau = n\} \in \mathcal{M}_n \cap \mathcal{E}(\Omega)$ for all $n \in \mathbb{N}$. In this paper, we call maps from $\mathcal{G}(E)$ to $\mathcal{G}(E)$ fuzzy transition operators. For an \mathcal{E} -stopping time τ , we define a fuzzy transition operator $P_{\tau}: \mathcal{G}(E) \mapsto \mathcal{G}(E)$ by

$$P_{\tau}\tilde{s}(x) := E_x(\tilde{s}(X_{\tau})) \quad x \in E \quad \text{for } \tilde{s} \in \mathcal{G}(E),$$

¹It denotes the smallest σ -field on Ω relative to which X_0, X_1, \dots, X_n are measurable.

²It denotes the smallest σ -field generated by $\bigcup_{n \in \mathbb{N}} \mathcal{M}_n$.

where $X_{\tau} := X_n$ on $\{\tau = n\}$, $n \in \mathbb{N} \cup \{\infty\}$. Clearly, P_0 is an identity operator and $P := P_1$ is given by

$$P\tilde{s}(x) = \sup_{y \in E} {\{\tilde{q}(x,y) \land \tilde{s}(y)\}} \quad x \in E \quad \text{for } \tilde{s} \in \mathcal{G}(E).$$
 (1.1)

2. Duality for an Optimal Stopping Problem

A map $\mu: \mathcal{E}(E) \mapsto [0,1]$ is called a possibility measure on E if it satisfies (i) — (iii):

- (i) $\mu(\phi) = 0$ and $\mu(E) = 1$;
- (ii) If $A, B \in \mathcal{E}(E)$ satisfy $A \subset B$, then $\mu(A) \leq \mu(B)$;
- (iii) If $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{E}(E)$, then $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sup_{n\in\mathbb{N}}\mu(A_n)$.

We define a fuzzy integration of a fuzzy set $\tilde{s} \in \mathcal{G}(E)$ by the possibility measure μ :

$$\mu(\widetilde{s}) := \oint_E \widetilde{s}(x) \ \mathrm{d}\mu(x) = \sup_{\alpha \in [0,1]} (\alpha \wedge \mu(\widetilde{s}_\alpha)).$$

Let \mathcal{P} be the set of all possibility measures on E. We introduce a partial order on \mathcal{P} as follows: For $\mu, \nu \in \mathcal{P}$, $\mu \geq \nu$ means that $\mu(A) \geq \nu(A)$ for all $A \in \mathcal{E}(E)$. We define $\mu L(\tilde{s}) := \mu(L\tilde{s})$ for $\tilde{s} \in \mathcal{G}(E)$ and fuzzy transition operators $L : \mathcal{G}(E) \mapsto \mathcal{G}(E)$. A fuzzy set $\tilde{s} \in \mathcal{G}(E)$ is called P-superharmonic if $\tilde{s}(x) \geq P\tilde{s}(x)$ for all $x \in E$. And, a possibility measure $\mu \in \mathcal{P}$ is also called P-excessive if $\mu \geq \mu P$.

We give a duality for Snell's optimal stopping problem in [2]. Let $\mu \in \mathcal{P}$ be a fixed initial possibility measure. Let $\tilde{s} \in \mathcal{G}(E)$ be a fuzzy goal. We consider a problem:

Maximize $\mu P_{\tau}(\tilde{s})$ with respect to finite \mathcal{E} -stopping times τ .

Then, we define a possibility measure

$$\nu(\tilde{s}) := \sup_{\tau : \text{finite } \mathcal{E} - \text{stopping times}} \mu P_{\tau}(\tilde{s}), \quad \tilde{s} \in \mathcal{G}(E). \tag{2.1}$$

Theorem 2.1 (Duality in Snell's optimal stopping problem). ν is the smallest P-excessive possibility measure dominating μ . Further, it holds that

$$\nu(\tilde{s}) = \min_{\mu' \in \mathcal{P}: \mu' \geq \mu, \, \mu' \leq \mu' P} \mu'(\tilde{s}) = \min_{\tilde{r}: P-\text{superharmonic}, \, \tilde{r} > \tilde{s}} \mu(\tilde{r}) \quad \text{for } \tilde{s} \in \mathcal{G}(E).$$
 (2.2)

References

- [1] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic fuzzy systems, Fuzzy Sets and Systems 51 (1992) 83-88.
- [2] Y.Yoshida, Markov chains with a transition possibility measure and fuzzy dynamic programming, Fuzzy Sets and Systems 66 (1994) 39-57.
- [3] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, A potential of fuzzy relations with a linear structure: The contractive case and The unbounded case, Fuzzy Sets and Systems 60 (1993) 283-294 and 66 (1994) 83-95.