Bicriterion Shortest Path Problems According to a Decision Maker's Preference

01011600 Ashikaga Junior College OKADA Shinkoh

1 Introduction

The bicriterion shortest path problem (BSP) can be described over a directed network G(N,A), consisting of a finite set N of n nodes and a finite set A of m directed arcs. Each arc is defined in terms of an ordered pair (i,j), where i and j denote the starting node and the ending node respectively. In bicriterion shortest path problem a vector $\mathbf{c}_{ij} = (c_{ij}^1, c_{ij}^2)$ such as 'cost', 'distance', 'duration time' and so on are associated with each $\operatorname{arc}(i,j)$. c_{ij}^1 and c_{ij}^2 are assumed to be positive.

In this network, we specify two nodes, denoted by s and t, which are the source node and the destination node, respectively. We define a path p_{ij} as a sequence $p_{ij} = \{i = i_1, (i_1, i_2), i_2, \dots, i_{l-1}, (i_{l-1}, i_l), i_l = j\}$ of alternating nodes and arcs. The existence of at least one path p_{si} in G(N, A) is assumed for every node $i \in N - \{s\}$. The distance vector $\mathbf{d}(p)$ along the path p is defined as $\mathbf{d}(p) = (d^1(p), d^2(p)) = (\sum_{(i,j) \in p} c_{ij}^1, \sum_{(i,j) \in p} c_{ij}^2)$.

The problem BSP may be stated as the following bi-objective linear programming problem: P1

$$\min \ c^1(x) = \sum_{(i,j) \in A} c^1_{ij} x_{ij} \tag{1}$$

min
$$c^2(x) = \sum_{(i,j)\in A} c_{ij}^2 x_{ij}$$
 (2)

subject to

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & \text{if } i = s, \\ 0 & \text{if } i \neq s, t \\ -1 & \text{if } i = t. \end{cases}$$
 (3)

$$x_{ij} = 0 ext{ or } 1 ext{ for any } (i,j) \in A.$$
 (4)

Let X denote the convex polyhedron defined by constraints (3) and (4).

2 Pareto optimality

We consider an order relation between vectors and define Pareto optimality based on the order relation between intervals proposed by Okada et al. [1].

Definition 1 Let \boldsymbol{a} and \boldsymbol{b} be vectors on R^2 such that $\boldsymbol{a} = (a_1, a_2)$ and $\boldsymbol{b} = (b_1, b_2)$. For given α and β such that $0 \le \alpha \le \beta \le 1$,

$$a \leq_{\alpha,\beta} b$$

 $\iff (1-\alpha)a_1 + \alpha a_2 \leq (1-\alpha)b_1 + \alpha b_2$ (5)
and $(1-\beta)a_1 + \beta a_2 \leq (1-\beta)b_1 + \beta b_2$ (6)

Definition 2 The strict inequality relation in Definition 1 is defined as follows: $\mathbf{a} \prec_{\alpha,\beta} \mathbf{b}$ if $\mathbf{a} \preceq_{\alpha,\beta} \mathbf{b}$ holds and the srict inequality holds in either (5) or (6).

The order relation $\leq_{\alpha,\beta}$ is contented with the axiom of order relation. It is totally ordered in case of $\alpha = \beta$, while it is partially ordered in case of $\alpha \neq \beta$. Hence, this sometimes leads to the indecisive case in which neither $\mathbf{a} \leq_{\alpha,\beta} \mathbf{b}$ nor $\mathbf{b} \leq_{\alpha,\beta} \mathbf{a}$ holds.

Lemma 1 If $\mathbf{a} \preceq_{\alpha,\beta} \mathbf{b}$ for $0 \le \alpha \le \alpha' \le \beta' \le \beta \le 1$, then $\mathbf{a} \preceq_{\alpha',\beta'} \mathbf{b}$.

Definition 3 Let $x,y \in X$ be two distinct feasible solutions of P1. x dominates y for given α and β iff $(c^1(x),c^2(x)) \prec_{\alpha,\beta} (c^1(y),c^2(y))$ holds

Definition 4 Let $X_{\alpha,\beta}^d = \{x \in X \mid \exists y \in X \text{ such that } (c^1(y), c^2(y)) \leq_{\alpha,\beta} (c^1(x), c^2(x)) \text{ be the set of dominated solutions of P1 for given } \alpha \text{ and } \beta.$ Then $X_{\alpha,\beta}^n = X \setminus X_{\alpha,\beta}^d$ is the set of α,β -nondominated solutions of P1, or the set of α,β -Pareto Optimal solutions of P1.

A path p_{st} corresponding to a α, β nondominated solution x of P1 is called a

 α, β -nondominated path or α, β -Pareto Optimal path. We remarks that the following equation holds:

$$d(p_{st}) = (d^1(p_{st}), d^2(p_{st})) = (c^1(x), c^2(x))$$

where the path p_{st} corresponds to a α, β -nondominated solution x of P1.

Lemma 2 Let $X_{\alpha,\beta}^n$ be a set of nondominated solution of P1 for given α and β . If $0 \le \alpha \le \alpha' \le \beta' \le \beta \le 1$, then $X_{\alpha,\beta}^n \supseteq X_{\alpha',\beta'}^n$.

3 Algorithm

On the basis of the multiple labeling method [2], an algorithm for solving bicriterion shortest path problems is immediately derived.

A label is composed of a distance vector and two pointers. Let $j \in N$ be a node of G(N,A), the k-th label associated with j is $[\boldsymbol{d}_k(p_{sj}),(i,k_1)]_k$, where i $(i \neq j)$ is a predecessor node of the label, $\boldsymbol{d}_k(p_{sj})$ is the distance vector along the path p_{sj} of the k-th label of j, and k_1 indicates some label of i, for which $\boldsymbol{d}_k(p_{sj}) = \boldsymbol{d}_{k_1}(p_{si}) + \boldsymbol{c}_{ij}$.

Let P and T be sets of permanent and temporary labels respectively. An element (i, k) in the sets P or T means a pointer to the k-th label of the node i.

While the permanent labels remain unchanged, the temporary labels can be deleted during the execution of the algorithm. From a permanent label of some node $i \in N$, a temporary label is assigned to every node $j \in N$, such that (i,j) is an arc of G(N,A).

Algorithm 1.

[step 0] Set the parameters α and β according to a decision maker's preference. Assign the label $[(0,0),(-,-)]_1$ to node s. Set it to temporary label and initialize the set of permanent labels to empty as follows:

$$T \leftarrow (1,1)$$
 and $P \leftarrow \emptyset$.

[step 1] If $T = \emptyset$, go to step 3. Otherwise, among all the temporary labels determine the lexicographically smallest one. Let it

be the k-th label associated with node i. Set this label as the permanent one as follows:

$$T \leftarrow T \setminus (i,k)$$
 and $P \leftarrow P \cup (i,k)$.

[step 2] While some node $j \in N$ exists, such that $(i,j) \in A$, execute

$$\boldsymbol{d}_l(p_{sj}) = \boldsymbol{d}_k(p_{si}) + \boldsymbol{c}_{ij}.$$

Let $[d_l(p_{sj}), (i, k)]_l$ be a new temporary label of the node j. Update the temporary label as follows:

$$T \leftarrow T \cup (j, l)$$
.

Among all the temporary labels of node j, delete all labels representing a dominated path from s to j, and also discard the elements corresponding to the labels from the set T. Return to step 1.

[step 3] Find the nondominated paths from s to t. For that, the two pointers of each label are used to recompose backwards the list of nodes of that path until reaching the node s.

[step 4] Terminate the execution of the algorithm.

It is noted that all the α, β -nondominated paths from the source node s to all nodes $i \in N \setminus \{s\}$ can be determined with Algorithm 1.

4 Conclusion

We proposed an algorithm for solving bicriterion shortest path problem according to a decision maker's preference. Some numerical examples will be presented at the conference.

References

- [1] S. Okada and M. Gen, "Fuzzy shortest path problem," Computers and Industrial Engineering, vol. 27, pp. 465-468, 1994.
- [2] E. Martins, "On a special class of bicriterion path problems," European Journal of Operational Research, vol. 17, pp. 85-94, 1984.