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Data Variations in DEA
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Introduction

Data in DEA are not always deterministic but suf-
fer from several factors of disturbance, e.g. errors
in data gathering, round-off errors, and statistical
noise. Thus, data are a chance realization of the
hidden true values and may fluctuate. Since DEA
is a data oriented methodology, study of this area of
uncertainty is a necessity. Specifically, the following

two questions arise:

1. If a DMU is judged efficient by a certain DEA
model, how robust is it with respect to a change

in an input/output value?

. If input/output values suffer from disturbance,
the efficiency score may vary accordingly.
Then, what is the probability that a DMU re-
mains efficient, or what is the distribution of
efficiency score- for efficient or nearly efficient

DMUs?

The first question concerns the sensitivity analysis
of DEA scores and the latter the stochastic analysis.

A string of DEA papers dealt with these subjects,
e.g. Charnes and Neralic (1990), Charnes, Cooper
and Zlobec (1990), Charnes et al. (1992), Thomp-
son et al. (1994) for the first subject and Sengupta
(1987), Morita et al. (1994), Wilson (1994) for the

second, among others.
L.

In this section, the following two subjects will be
dealt with:

Sensitivity Analysis in DEA

1. Suppose a DMU, say DMU,, is efficient by
the DEA model employed. What is the up-
per bound of increase in a certain input value

of DMU, for preserving efficiency?

. What is the lower bound of decrease in a cer-
tain output value of DMU, {for preserving effi- 1

ciency?
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We will solve these problems using a bi-section
method. Although we describe the method for the
CCR model, we can also develop similar procedures
for other DEA models.

1.1 The Upper Bound of Increase in an
Input Value

Let the objective input item of the sensitivity anal-
ysis be z;,. If we increase z;, and measure the
efficiency 8(z;,) of DMU, as a function of z;,, then
either there is an upper bound Z;, beyond which
DMU, is no longer efficient, or there is no bound,
i.e. (z;0) = 1 for every z;, > 0. We can solve these
problems using a bisection method as described be-
low. In the algorithm, we use a very small num-

1/1000 and a large number M,

ber €, eg. €

e.g. M =105,
Step O. Set
switch = 0
T = &, (the original data)
Typ = 2z,
IMID = IUB
Step 1.

If |ty — zB| < €, then we have

Zio = TMID- Stop.

If |ryg — zrB| > M, then there is no
bound of increase in z;,. Stop.

Otherwise evaluate 6(zprp) by the

CCR model.
Step 2
(i) If switch = 0 and 6(zpmip) = 1,
then set
Ip = TyB —TLB



zyp = xyp+2zp
ZLB = ZUB

IMID = ZUB-

Return to Step 1.
(li) I 9(1'M1D) < 1, then set

switch = 1

ITMID

(zup + zLB)/2.

TUB

IMID

Return to Step 1.
(iii) If switch =1 and 6(zmip) = 1,

then set
TLB = ZIMID
zmip = (zup +zLB)/2.

Return to Step 1.

Once the switch is turned to 1, the interval
zup — B that contains Z;, will be reduced by
1/2* after k iterations.

1.2 The Lower Bound of Decrease in an
Output Value

In a similar setting to the above case, we can deal
with the lower bound of decrease in an output value

of an efficient DMU, using the bisection method.
1.3 An Example of Sensitivity Analysis

We will show an example at the presentation.

2. Stochastic DEA

In the previous section, we looked into the sensitiv-
ity analysis with respect to a specified input/output
item of an efficient DMU and found the upper/lower
bound of its variation for keeping the DMU effi-
cient. In this sectidn, we assume that all the data
are subject to change according to some probability
distributions; uniform, triangle, normal, lognormal,

among others. Subsequently, the efficiency score is

no more deterministic but stochastic. So, the sub-
ject in this section is called the stochastic DEA. We

will introduce a simulation study for this purpose.
2.1 Stochastic DEA by Simulation

This simulation is done in the following way. The
input/output data are sampled from the fitted

probability distribution, usually expressed as
[original data] + [noise].

After sampling the noisy inputf/output data, we
evaluate the efficiency of each DMU by an appropri-
ate DEA model. We will repeat the above process
for sufficiently many times, e.g. 1000, 5000 or 10000.

2.2 An Example of Stochastic DEA

We will show an example at the presentation.
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