A Polynomial Algorithm For Enumerating Vertices Of A Base Polyhedron

01991170 The University of Tsukuba, Ping ZHAN

1. Introduction and Definitions

It is well known that it is difficult to enumerate all vertices of a polytope in polynomial time. In this paper we will give a polynomial algorithm which enumerates vertices of a base polyhedron.

It should be noted that the result of our paper is a generalization of spanning tree enumeration problem and matroid base enumeration problem.

Given a finite set $N = \{1, 2, \dots, n\}$, define a submodular function $f: 2^N \to \mathbb{R}$ with

$$\forall X, Y \subseteq N : f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y).$$

The problem is to enumerate all vertices of the following base polyhedron

$$B(f) = \{ x \mid x \in \mathbb{R}^N, \forall X \subset N : x(X) \le f(X), \\ x(N) = f(N) \},$$

where,
$$x(X) = \sum_{e \in X} x(e)$$
.

Theorem 1.1: A vector v is a vertex of a base polyhedron of B(f) if and only if for a maximal chain

$$C: \emptyset = S_0 \subset S_1 \subset \cdots \subset S_n = E$$

we have

$$v(j) = f(S_i) - f(S_{i-1}) \ (i = 1, 2, \dots, n),$$

where $\{j\} = S_i - S_{i-1}$.

Here we introduce briefly certain lattice and poset related to a vertex of $\mathrm{B}(f)$. Let v be a vertex of $\mathrm{B}(f)$, define

$$\mathcal{D}(v) = \{ X \mid X \subseteq N, \ v(X) = f(X) \}.$$

Now we describe how to construct poset $P(\mathcal{D}(x))$. For a vertex v of a base polyhedron and an element i, define

$$dep(v,i) = \bigcap \{X \mid i \in X \subseteq N, \ v(X) = f(X)\},\$$

and define $j \leq_v i$ if and only if $j \in \text{dep}(v, i)$. We can draw the Hasse diagram $P(\mathcal{D}(v))$ as following. The vertex set of G_v is N, we draw an arc from i to j if and only if i covers j, i.e., $j \prec_v i$, and there is no $k(\neq i, j)$ such that $j \prec_v k \prec_v i$.

Theorem 1.2: A vertex u is adjacent to v if and only if u is computed by a chain which is a chain of v but exchanging i and j of a pair (i, j), here (i, j) is an edge of G_v .

2. Preliminary Results

We use G_v ($v \in V$) to denote the Hasse diagram of a vertex v of a base polyhedron in the following. In the reverse search algorithm, let $v^* = (v_1^*, v_2^*, \cdots, v_n^*)$ be the optimal vertex of a base polyhedron, which is generated by $v_i^* = f(\{n, n-1, \cdots, i\}) - f(\{n, n-1, \cdots, i+1\})$ ($i = n-1, \cdots, 1$), $v_n = f(n)$. Define the local search function $f_B \colon V \setminus v^* \to V$

$$f_B(v) := v + \tilde{c}(v, i^*, j^*)(\chi_{j^*} - \chi_{i^*})$$

where $i^* = \min\{i \mid j \text{ covers } i \text{ in } G_v \text{ and } i < j\},$ $j^* = \max\{j \mid j \text{ covers } i^*\} \text{ and } \tilde{c}(v, i^*, j^*) \text{ is a function of } v, i^*, j^*.$

Lemma 2.1: Assume u is a vertex of B(f) and j covers i in G_u , and v is the vertex of P(f) which is obtained by $v=u+\tilde{c}(u,j,i)(\chi_j-\chi_i)$, let S'_k and S_k be the sets which are satisfied with

$$S'_k = \bigcap \{T \mid u(T+i+j+k) = f(T+i+j+k)\}$$

$$S_k = \bigcap \{T \mid v(T+j+i+k) = f(T+j+i+k)\},$$

then we have $S'_k = S_k$ and also $S_k = dep(v, i) \cup dep(v, j) \cup dep(v, k) - i - j - k$.

Also let $T = \text{dep}(v, i) \cup \text{dep}(v, j)$, then $\tilde{c}(u, j, i) = -\tilde{c}(v, i, j) = f(T + j) + f(T + i) - f(T) - f(T + i + j) > 0$.

For brevity, we omit index of S_k , i.e., $S_k = S$.

Lemma 2.2: Let v be a vertex of a base polyhedron and G_v its Hasse diagram. Exchange i and j of a pair (i,j) with i covering j in G_v to create a new adjacent vertex, say u. Then j with i < j is the maximum index among the elements which cover i if and only if for pair (i,j) with i < j and i covering j in G_v , there is no k in G_v which satisfies:

(1) k covers j with k > j and

$$f(S+i+j)+f(S+i+k) = f(S+i)+f(S+i+j+k),$$

and also no k in G_v which satisfies:

(2) k covers i with k > j and

$$f(S+i+j) + f(S+i+k)$$

= $f(S+i) + f(S+i+j+k)$,
 $v(S) = f(S)$,

where $S = \bigcap \{T \mid v(T+j+i+k) = f(T+j+i+k)\}.$

Lemma 2.3: Let v be a vertex of a base polyhedron and G_v its Hasse diagram. Exchange i and j of a pair (i,j) with j > i and i covering j in G_v to create a new adjacent vertex u. Then there is no pair (m,l) with m > l, l < i and l covering m in G_u if and only if there is no pair (k,l) in G_v , that k covers l with k > l, here k may be m.

3. An Enumerating Algorithm

For a pair (i,j) with j > i, we say it is false if in some Hasse diagram there is no such pair (i,j) with i covering j or there is a k which satisfies the condition of Lemma 2.2. Otherwise, we say the pair (i,j) is true. Now we give the enumerating algorithm.

Input: A finite set $N = \{1, 2, \dots, n\}$, a submodular function $f: 2^N \to \mathbb{R}$.

Output: All vertices of the base polyhedron.

Step 0: Assume the optimum vertex of base $v^* = (v_1^*, v_2^*, \cdots, v_n^*)$, where $v_i^* = f(\{n, n-1, \cdots, i\}) - f(\{n, n-1, \cdots, i+1\})$ $(i = n-1, \cdots, 1)$, $v_n = f(n)$. Compute the Hasse diagram of the vertex v^* and $dep(v^*, i)$ for each $i = (1, 2, \cdots, n)$. Compute $l := \min\{i \mid j \text{ covers } i \text{ and } i < j\}$. Get output v^* . Put $v := v^*$; i := l; j := i+1. Go to Step 1.

Step 1: (reverse search) If the pair (i,j) is true, let $T = \text{dep}(v,i) \cup \text{dep}(v,j) - i - j$, compute $\tilde{c}(v,i,j) = f(T+i) + f(T+j) - f(T+i+j) - f(T)$, get output $u := v + \tilde{c}(v,i,j)(\chi_j - \chi_i)$, put v := u, compute the Hasse diagram of the vertex v and dep(v,i) for each $i = (1,2,\cdots,n)$, and also compute $l := \min\{i \mid j \text{ covers } i \text{ and } i < j\}$, put $i := l; \ j := i+1$

Otherwise, if j < n, put j := j + 1.

Otherwise, if i > 1, put i := i - 1 and j := i + 1. Go to the beginning of Step 1.

Otherwise, if $v = v^*$, stop. Otherwise, go to Step 2.

Step 2: (forward traverse) Let $i^* = \min\{i \mid j \text{ covers } i \text{ and } i < j\}$, and $j^* = \max\{j \mid i^* \text{ covers } j\}$.

If $j^* < n$, Put $i := i^*$ and $j := j^* + 1$.

Otherwise, if $i^* > 1$, put $i := i^* - 1$ and j := i + 1. Let $T = \text{dep}(v,i) \cup \text{dep}(v,j) - i - j$, compute $\tilde{c}(v,j,i) = f(T+i) + f(T+j) - f(T+i+j) - f(T)$, put $u := v + \tilde{c}(v,j,i)(\chi_i - \chi_j)$, put v := u, compute the Hasse diagram of the vertex v and dep(v,i) for each $i = (1,2,\cdots,n)$. Go to the beginning of Step 1.

Otherwise, if $v = v^*$, stop. Otherwise, go to the beginning of Step 2. (End)

Theorem 3.1: There is an implementation of reverse search for enumerating vertices of a base polyhedron with time complexity $O(n^3|V|)$ and space complexity $O(n^2)$.

References

- [1] D.Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics, to appear.
- [2] R. E. Bixby, W. H. Cunningham and D. M. Topkis, Partial order of a polymatroid extreme point, Mathematics of Operations Research 10 (1985) 365-378.
- [3] . Fujishige, Submodular Function and Optimization, Ann. Discrete Math., Vol. 47, North-Holland, Amsterdam, 1991.