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On a Distributional Versiom of Little's Law
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1. Introduction

The well known Little’s Law (L = AW) for queueing systems relates the (time-average) mean queue length to the
(customer-average) mean waiting time in the system. Over thirty years since Little's law first appeared [5], its simplicity
and importance have established it as a basic tcol of queueing theory. Although there is considerable knowledge about
Little's law and its extensions [10,11], its distributional version for many systems is still an open question [1,2,3,4]. For
example, a distributional relationship between queue length and waiting time for a multi-class batch-asrival pricrity queuc
has been recently obtained in Takahashi & Miyazawa [8]. The primary purpose of this talk is to illusirate how such a re-
lationship can be obtained via the point process approach. go simplify the presentation, we will only deal with a
continuous-time system. For the discrete-time systems, see Talcahashi & Miyazawa [9].

2. Preliminaries
We begin with the following assumptions. (A1) There exists 2 marked point process:

= { @X8,(D S (X)) )27
which has a probability space (£2, f,lP) and is strictly stationary with respect to the shift operator T, where {t.}.** is a set

iliz=-es
of real numbers with no pomt accumulation such that -+ <t ; <ty <0<t <ty <+~ The X; and S,(j) (1 £jsX) take

values in some measurable space (K, %), while T is the operator on 2 such that TSw = { (l +s Xl,S ,,S. (X ) A P

for real s. (A2) X(1)(®) is a measurable function of (t,0) from (RxQ,B(R)x %) to (E,BE)), i.e., {X(t)} is a measuradble
process. (A3) For any s and t, X()(w) = X(t - s)(T*0) (Vws).

Let N be the arrival point process of batches with intensity A, =EN,[0,1) < eo. Let ]PNb and ENb be the Palm
distribution with respect to N, , and its expectation, respectively. The following lemma is then verified as in Miyazawa[6).
For a multi-class extension, see Takahashi & Miyazawa [8].

Lemma 2.1 Consider a GI*/GI/] queue. Let T, the inter-arrival time between the 0-th and 1-st batches. For any
bounded non-negative function u, we have

T
E(u(m)):kbENb[ {) u(Tw) ds). 2.1

Moreover, if there exists a process (Z(t)} satisfying that Z(s,0) = u(T*0) (0 < s < T,) (as. P and that for eachs> 0
Z(s) and (T, > s} are PNb-ixldependenl each other, then '

E@) =Ry [Py, (T, 2 9By [Z()1ds. 22)

3. Batch arrival priority queue

—>
We consider a Gl / GI /1 priority queue with I classes. We assume that a customer with a smaller index has
precedence over a customer with a greater index. For the priority queue, we use subindex p (signifying class p) on each of
the corresponding notations for the single-class (non-priority) queue in the literature [6]). For example, / (t) denotes the

number of class p customers in the system at time t, and W n the waiting time of the first customer in the n-th batch of
class p. Let N_, be the arrival point process of class p batches. Let P b be the Palm distribution with respect to the point
process N_ Benole by E b (or E) the expectation with respect to P b (or P).

To denote functions (or transforms) for class p, we also use subindex p on each of the corresponding functions (or
transforms) for the single-class queue. For example, T (z) E(z’P(‘)) denotes the pgf for queue-length distribution, and

Wes)=E (e "‘WW‘) denotes the LST for the waiting time distribution of the first customer in a class p batch.

The compleuon time C m Of the m-th customer of class p is defined as the interval from the moment at which the m-th
class p customer enters servnce to the first moment at which there are no higher class {1,2,-,p-1} customers in the
system. We denote by C*(s) =E b(e Cpun) the LST for class p completion time distribution.

Suppose that a class p batch arrived at the queue at the origin of time axis (1 S p <I). Consider an event {I (s)2j} for
j20ands(0O<s<t ,) in the queue. We then note that

[l (s) 2 j} = ((at least) class p customers out of the ones who arrived at the queue before time 0 still remain

in system}. (3.1)
Denoting by i (i 2 0) be the index of the eldest (class p) customer out of the ones who still remain in the system at time s,
we have
Xp +Xp IR +Xp’02j>Xp._i+] +---+Xp'o. (3.2)
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If we assume that Xp PR Xp o=kand )(p 4= m, we have the following correspondence under the NP (non-
preemptive) priority rule. ) '
((at least) j - k class p customers out of Xp _; = m still remain in system at time s)

d
= {Wp'o + Cp,l + o Cp.m-(j-k) + Sp'm_o_k)+l > Tp'l + o+ Tp'i +s} (as. Pp'b). 3.3)

Here, we used the convention for empty sum, e.g., C 1+ +C_ =0. Wecan also treat the wait-length process but we

will omit here. Under the PR (preemptive-resume) ru?é, if we distinguish between the number of customers in the waiting

room and that in limbo , a similar discussion can be developed. Applying a multi-calss version of Lemma 2.1 we have the
following proposition.

—— —
Proposition 3.1 In a multi<lass GI**/ GI /1 queue, we have for an individual class p
+o0

PU 2D =PU@ 2) =Ry [P, T, > 9P, (1, (5) 2 s G20, (3.4)

where Ip denote the class-p stationary queue length.

Proposition 3.1 finally yields the following theorem and corollary, which link the queue-length and waiting time
distributions in a priority queue. ' '

—-—— -
Theorem 3.2 Consider a GI™/ GI /1 priority queue with I classes. For an individual class p (1 < p S I), we have

_ 1-2z o m = ; _
T@=1-—= lp'bmé 1 z,l {) PosWp0t Cot + +Cpr ity + Spmiiger > 9) 2 P p(X=m)
xE_ b()“(p(z)“‘p-b<°~’>)ds under NP, (3.5)
‘ 1-2 o om b :
-1.1-2 J =
T@=1-—"=1 'bmz=1 ,-‘1:1 {) PopWo0+Cpy++Co i +Co a1 > 92 _Pp,b(xp m)
xE, b(5'<p(z)“'p.b<°-=)) ds, under PR. . (3.6)

‘ - =
Corollary 3.3 Consider an M?/ GI /1 priority queue with I classes. For an individual class p (1 < p <), we have
X (o)) - X (@)

1-12
T (z)=————— W*(0 _)S*(o der NP, 3.7
p® - %@ p(0)S5(0) Cio)) 2 under 3.7
1-z X(C30)) - X (@)
T (z) = ———— W* * p"pp 1) ) . .
p@ - )Tp(z) »(©,)C(0) Cio) 2 under PR (3.8)

Here, o, = op(z) = A'p,b(l - )?p(z)).

Remark 3.4 a) The functions C"(op) and W;(cp) (1 £p <1)in (3.7) and (3.8) of Corollary 3.3 were previously

obtained via the delay-cycle approach, see Takahashi & Shimogawa (7). b) Note that (3.7) reduces to those of Keilson &
Servi [4] for two-class (I = 2) Poisson (non-batch) input priority system. §
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