An Efficient Algorithm for the Minimum-Range Ideal Problem

02401130 " 根本 俊男 (筑波大学 社会工学研究科)

1. Introduction

Suppose we are given a poset (partially ordered set) $\mathcal{P} = (E, \preceq)$, a real weight w(e) associated with each element $e \in E$ and a positive integer k. A subset of E is called an *ideal* I of \mathcal{P} if $e \preceq e' \in I$ always implies $e \in I$. We consider the problem as follows:

$$\mathbf{P}_{\mathsf{range}}$$
: Minimize $\max_{e \in I} w(e) - \min_{e \in I} w(e)$
subject to $I \in \mathcal{I}(\mathcal{P}), |I| = k$ (1.1)

where $\mathcal{I}(\mathcal{P})$ is the set of all the ideals of \mathcal{P} , and |X| is the cardinality of a finite set X. We call this problem the minimum-range ideal problem (P_{range}). We hope that this problem serves as a subproblem for leveling resources for large scale scheduling planning.

The optimization problem on the ideal is valuable because many applications in real-life are formalized as the ideal problem. Therefore, various types of this class of problems have been well researched. It is interesting to note that the cardinality-restricted ideal problem is \mathcal{NP} -hard if the objective function is linear, but it has a strongly polynomial algorithm if the objective is to minimize the range. To the author's knowledge, no one has ever considered $P_{\rm range}$.

The min-range problem is also an interesting combinatorial optimization problem. Several researchers have studied a number of min-range problems, including the assignment problem [3], the spanning tree problem [1], and the cut problem [2]. For these problems, a general algorithm has been proposed in [3]. Simply applying the general algorithm in [3], P_{range} can be solved in O(mn) time, where n = |E| and m is the smallest number of arcs to represent \mathcal{P} .

However, we present an $O(n \log n + m)$ algorithm for this problem. This algorithm is different from the algorithms proposed for the above min-range combinatorial problems. It is also proved that this problem has an $\Omega(n \log n + m)$ lower bound. This means that the algorithm presented in this paper is optimal.

2. The Minimax Ideal Problem

We consider the minimax ideal problem and the maximin ideal problem which play an important role to solve P_{range}. The former is defined as follows:

$$P_{\min} : \min \{ \max_{e \in I} w(e) | (1.1) \}.$$

Algorithm MINIMAX (\mathcal{P}, k)

The following algorithm solves P_{minimax}.

Step 1: Put $J := \emptyset$.

Step 2: Repeat the following (a) and (b) k times.

- (a) $C := \{e | e \text{ is a minimal element of } \mathcal{P}(E J)\}.$
- (b) If $C = \emptyset$, then stop (there is no ideal of size k of \mathcal{P}). Otherwise find a min-weight element \hat{e} in C, and $J := J \cup {\hat{e}}$.

Theorem 2.1: MINIMAX(\mathcal{P}, k) computes a minimax ideal of \mathcal{P} in $O(n \log n + m)$.

Similarly, we define the latter (P_{maximin}) and construct an algorithm, which is called MAXIMIN(\mathcal{P},k).

3. A Naive Algorithm

For real values α and β with $\alpha < \beta$, let $L(\alpha) = \{e | e \in E, w(e) \leq \alpha\}$ and $H(\beta) = \{e | e \in E, w(e) > \beta\}$, and for an element $e \in E$, let $F(e) = \{\hat{e} | e \preceq \hat{e}, \hat{e} \in E\}$. Then, a set $E - \bigcup_{e \in L(\alpha)} F(e) - \bigcup_{e \in H(\beta)} F(e)$ is an ideal of \mathcal{P} . For simplicity, we use $\mathcal{P}(\alpha, \beta]$ as an abbreviation for the subposet induced by the above ideal. Similarly, we abbreviate $\mathcal{P}(E - \bigcup_{e \in L(\alpha)} F(e))$ to $\mathcal{P}(\alpha, \infty)$, and $\mathcal{P}(E - \bigcup_{e \in H(\beta)} F(e))$ to $\mathcal{P}(-\infty, \beta]$.

First, we show that there exists the subposet of \mathcal{P} whose min-range ideal is found easily. Given a real value α_i , compute the optimal value of $P_{\min\max}$ on $\mathcal{P}(\alpha_i, \infty)$, denoted by β_{i+1} , if $\mathcal{P}(\alpha_i, \infty)$ has an ideal of size k. Then, identify $\mathcal{P}(\alpha_i, \beta_{i+1}]$.

Lemma 3.1: For all ideal I of size k of $\mathcal{P}(\alpha_i, \beta_{i+1}]$, we have $\max\{w(e)|e \in I\} = \beta_{i+1}$.

Combining this lemma and the fact that P_{range} becomes equivalent to $P_{maximin}$ if every ideal has the same maximum weight, we have the lemma below.

Lemma 3.2: Let I_{i+1} be a maximin ideal of $\mathcal{P}(\alpha_i, \beta_{i+1}]$. Then I_{i+1} is a min-range ideal of $\mathcal{P}(\alpha_i, \beta_{i+1}]$.

Next, we shall expand the discussion above into a naive algorithm. Let α_0 be a sufficiently small value. Then we have $\mathcal{P}(\alpha_0,\infty)=\mathcal{P}$ and we can find the first appropriate value β_1 by applying MINIMAX (\mathcal{P},k) . Furthermore, by applying MAXIMIN $(\mathcal{P}(\alpha_0,\beta_1],k)$ a min-range ideal I_1 of $\mathcal{P}(\alpha_0,\beta_1]$ is obtained. Define $\alpha_1=\min\{w(e)|e\in I_1\}$. After that, repeat the above processes for $\alpha_i(i\geq 1)$ obtained in the previous iteration until there is no ideal of size k of $\mathcal{P}(\alpha_i,\infty)$. We

[°]Toshio NEMOTO: A Doctoral Candidate studying at Doctoral program in Socio-Economic Planning, University of Tsukuba, Tsukuba, 305 JAPAN.
e-mail: nemoto@shako.sk.tsukuba.ac.jp

prove the fact that there is a min-range ideal of \mathcal{P} in $\{I_i|i=1,\ldots,q\}$ obtained above. Therefore, it takes $O(n(n\log n+m))$ time to find a min-range ideal. This time is not faster than the general algorithm [3].

4. Improved Implementation

To improve the time of the naive algorithm to $O(n \log n + m)$, we introduce three new ideas.

Firstly, we examine a method to identify $\mathcal{P}(-\infty, \beta)$. Let J' be the set J obtained by repeating Step 2 of MINIMAX (\mathcal{P}, k) while $\min\{w(e)|e \in C\} \leq \beta$ holds after MINIMAX (\mathcal{P}, k) is done, where β is the optimal value of $P_{\min\max}$. Then, we have that $J' = E - \bigcup_{e \in H(\beta)} F(e)$, i.e., $\mathcal{P}(J') = \mathcal{P}(-\infty, \beta)$.

Secondly, we propose how to identify $\mathcal{P}(\alpha, \infty)$. In general, no method except for the basic searchmethod is found. However, by using the information of $\mathcal{P}(-\infty,\beta)$ obtained in the previous step, $E-\cup_{e\in L(\alpha)}F(e)$ can be identified by the following three operations.

D¹(e): Deletion of F(e) for $e \in (E - \bigcup_{e \in H(\beta)} F(e)) - \tilde{I}$. D²(e): Deletion of F(e) for each $e \in \tilde{I}(\alpha)$.

D³(e): Deletion of F(e) for each remaining $e \in L(\alpha)$. Here, \tilde{I} is a maximin ideal of $\mathcal{P}(-\infty, \beta]$, $\alpha = \min\{w(e)|e \in \tilde{I}\}$ and $\tilde{I}(\alpha) = \{e|e \in \tilde{I}, w(e) = \alpha\}$. In fact, it is not necessary to identify $\mathcal{P}(\alpha, \infty)$ completely to find a minimax ideal of it. The above operations are carried out as the need arises.

Thirdly, we introduce a new preprocessor scheme, which uses two new orders on E defined below. In carrying out MINIMAX(\mathcal{P}, n), every element in E belongs to J in turn. The minimax-order of \mathcal{P} is defined as the order in which MINIMAX(\mathcal{P}, n) considers the element. In a similar fashion, define the maximin-order of \mathcal{P} by MAXIMIN(\mathcal{P}, n).

Theorem 4.1: For an ideal J of \mathcal{P} and an integer k with $0 \le k \le |J|$, the subset $I \subseteq J$ consisting of k elements in minimax-order (maximin-order) of \mathcal{P} is a minimax ideal (maximin ideal) of $\mathcal{P}(J)$.

Hence, given the minimax-order and the maximinorder of \mathcal{P} as a preprocessor, it is not necessary to arrange the set of all the minimal elements of the underlying subposet to solve P_{minimax} and P_{maximin} .

Now, let us describe an efficient implementation of the naive algorithm.

Algorithm RANGE⁺(\mathcal{P}, k)

Step 1: Define the minimax-order and the maximinorder of \mathcal{P} , and give each element in E the index in the minimax-order. Put $J := \emptyset$, S := E, range := ∞ , $\alpha := -\infty$, $\beta := -\infty$ and i := 1.

Step 2: While $S \neq \emptyset$, do the following, (2-1) to (2-5). (2-1): Repeat the following until |J| = k.

- (a) If $e_i \in S$ and $w(e_i) \leq \alpha$, then $D^3(e_i)$. If $e_i \in S$ and $\alpha < w(e_i) \leq \beta$, then $S := S - \{e_i\}$ and $J := J \cup \{e_i\}$. If $e_i \in S$ and $\beta < w(e_i)$, then $\beta := w(e_i)$, $S := S - \{e_i\}$ and $J := J \cup \{e_i\}$.
- (b) i := i + 1. If i > n and |J| < k, then go to Step 3. If i > n and |J| = k, then go to (b').
- (2-2): While $w(e_i) \leq \beta$, do the following.
 - (a') If $e_i \in S$ and $w(e_i) \leq \alpha$, then $D^3(e_i)$. If $e_i \in S$ and $\alpha < w(e_i)$, then $S := S - \{e_i\}$, $J := J \cup \{e_i\}$, find the biggest $\hat{e} \in J$ in the maximin-order and $D^1(\hat{e})$.
 - (b') i := i + 1. If i > n, then call (2-3) and (2-4), and go to Step 3.
- (2-3): Find the min-weight element $\tilde{e} \in J$ and $\alpha := w(\tilde{e})$. If $range > \beta \alpha$, then $range := \beta \alpha$ and $\beta^* := \beta$.
- (2-4): While $w(\tilde{e}) = \alpha$, do $D^2(\tilde{e})$ and find the min-weight element $\tilde{e} \in J$.

Step 3: Retrieve a min-range ideal by using β^* .

Theorem 4.2: RANGE⁺(\mathcal{P}, k) correctly computes a min-range ideal of \mathcal{P} in $O(n \log n + m)$ time.

5. Lower Bound

We shall consider a lower bound for Prange.

The closest k numbers problem (Cl(k)): Given n real numbers and a positive integer k, find k numbers whose range is smallest.

Lemma 5.1: Cl(k) has an $\Omega(n \log n)$ lower bound. \square

We prove the fact that Cl(k) is n-transformable to P_{range} . Therefore, we have the following lemma.

Lemma 5.2: P_{range} has an $\Omega(n \log n + m)$ lower bound.

Theorem 5.3: The algorithm RANGE⁺(\mathcal{P}, k) requires $\theta(n \log n + m)$ time, which is optimal.

References

- [1] Z. Galil and B. Schieber: On finding most uniform spanning tree. Discrete Applied Mathematics 20 (1988) 173-175.
- [2] N. Katoh and K. Iwano: Efficient algorithms for minimum range cut problems. *Networks* 24 (1994) 395-407.
- [3] S. Martello, W.R. Pulleyblank, P. Toth and D. de Werra: Balanced optimization problems. Operations Research Letters 3 (1984) 275-278.