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An Efficient Algorithm for the Minimum-Range Ideal Problem

1. Introduction

Suppose we are given a poset (partially ordered sct)
P = (E,=X), a real weight w(e) associated with each
element e € F and a positive integer k. A subset of F
is called an sdeal I of P if ¢ < ¢’ € I always implies
e € I. We consider the problem as follows:

Minimize maxw(e) — min w(e)
ecl el

IeI(P)|I|=k (11)

where Z(P) is the set of all the ideals of P, and | X] is
the cardinality of a finite set X. We call this problem
the minimum-range ideal problem(P;ange). We hope
that this problem serves as. a subproblem for leveling
resources for large scale scheduling planning.

The optimization problem on the ideal is valuable
because many applications in real-life are formalized as
the ideal problem. Therefore, various types of this class
of problems have been well researched. It is interesting
to note that the cardinality-restricted ideal problem is
NP-hard if the objective function is linear, but it has
a strongly polynomial algorithm if the objective is to
minimize the range. To the author’s knowledge, no one
has ever considered Prayge.

The min-range problem is also an interesting com-
binatorial optimization problem. Several researchers
have studied a number of min-range problems, includ-
ing the assignment problem (3], the spanning tree prob-
lem [1}, and the cut problem [2]. For these problems, a
general algorithm has been proposed in [3]. Simply ap-
plying the general algorithm in [3], P;ange can be solved
in O(mn) time, where n = |E| and m is the smallest
number of arcs to represent P.

However, we present an O(nlogn + m) algorithm
for this problem. This algorithm is differctit from the
algorithins proposed for the above min-range combina-
torial problems. It is also proved that this problem has
an Q(nlogn + m) lower bound. This means that the
algorithm presented in this paper is optimal.

Prange :

subject to

2. The Minimax Ideal Problem

We consider the minimaz ideal problem and the maz-
imin ideal problem which play an important role to
solve Prange. The former is defined as follows:

Prinimax miu{mea;\c w(e)|(1.1)}.
€
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The following algorithm solves P inimax-

Algorithm MINIMAX(P, k)

Step 1: Put J := 0.

Step 2: Repeat the following (a) and (b) & times.
(a) C := {e|e is a minimal element of P(E - J)}.

(b) If C = 0, then stop (there is no ideal of size k
of P). Otherwise find a min-weight element

éin C, and J := J U {é}.

Theorem 2.1: MINIMAX(P, k) computes e minimaz
ideal of P in O(nlogn + m). O

Similarly, we define the latter(Pmaximin) and construct
an algorithm, which is called MAXIMIN(P,k).

3. A Naive Algorithm

For real values o and  with a < 8, let L(a) = {e|e €
F,w(e) < a} and H(B) = {e] e € E,w(e) > B}, and
for an element e € E, let F(e) = {éle £ é,é € E}.
Then, a set E — Ue(a)F(€)—Uecn(g F(e) is an ideal
of P. For simplicity, we use P(a, ] as an abbreviation
for the subposet induced by the above ideal. Similarly,
we abbreviate P(E — Ueep(a)F(e)) to P(a,00), and
P(E - Uee"(ﬂ)F(C)) to ’P(—oo,ﬁ]

First, we show that there exists the subposet of P
whose min-range ideal is found easily. Given a real
value ay;, compute the optimal value of Prinimax On
P(ai,00), denoted by Biy1, if P(a;,00) has an ideal of
size k. Then, identify P(a;, Biv1]-

Lemma 3.1: For all ideal I of size k of P(a, Bit1],
we have max{w(e)le € I'} = Biy1. o

Combining this lemma and the fact that Prange be-
comes equivalent to Praximin if every ideal has the same
maximum weight, we have the lemma below.

Lemma 3.2: Let Iiny be a mazimin
ideal of P(ai,Bi+1)- Then Iiyy is a min-range ideal
Of p(aisﬁi+l]~ o

Next, we shall expand the discussion above into a
naive algorithm. Let a¢ be a sufficiently small value.
Then we have P{ag,00) = P and we can find the
first appropriate value §; by applying MINIMAX(P k).
Furthermore, by applying MAXIMIN(P(ag, 01],k) a
min-range ideal I; of P(ay, )] is obtained. Define
a; = min{w(e)le € I1}. After that, repeat the above
processes for ;(i > 1) obtained in the previous itera-
tion until there is no ideal of size k of P{a;,00). We
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prove the fact that there is a min-range ideal of P in
{Lli = 1,...,q} obtained above. Therefore, it takes
O(n(nlogn+m)) time to find a min-range ideal. This
time is not faster than the general algorithm [3].

4. Improved Implementation

To improve the time of the naive algorithmm to
O(nlogn + m), we introduce three ncw ideas.

Firstly, we examine a method to identify P(—o0, ).
Let JJ' be the set J obtained by repcating Step 2 of
MINIMAX(P, k) while min{w(e)le € C} < § holds
after MINIMAX(P, k) is done, where f# is the opti-
mal value of Pinimax- Then, we have that J' =
E- UeEH(ﬂ)F(e)s i.e.,’P(J’)=73(—oo, ﬁ)

Secondly; we propose how to identify P(a,o0).
In general, no method except for the basic search-
method is found. However, by using the informa-
tion of P(—o00, ) obtained in the previous step, E —
UeerL(a)F(e) can be identificd by the following three
operations.

D'(e): Deletion of F(e) for ¢ € (E —U,enp Fle)) - 1.
D2(e): Deletion of F(e) for cach e € I(a).

D?*(e): Delction of F(e) for each remaining e € L(«).
Here, I is a maximin ideal of P(-00,8], o =
min{w(e)le € I} and I(a) = {e|e € I,w(e) = a}. In
fact, it is not necessary to identify P(c, 00) completely
to find a minimax ideal of it. The above operations are
carried out as the need arises.

Thirdly, we introduce a new preprocessor scheme,
which uses two new orders on E defined below. In car-
rying out MINIMAX(P, n), cvery element in E belongs
to J in turn. The minimaz-order of P is defined as the
order in which MINIMAX(P, n) considers the element.
In a similar fashion, define the mazimin-order of P by

MAXIMIN(P, n).

Theorem 4.1: For an ideal J of P and an integer k
with 0 < k < |J|, the subset I C J consisting of k
elements in minimaz-order (mazimin-order) of P is a
minimaz ideal (mazimin ideal) of P(J). o

Hence, given the minimax-order and the maximin-
order of P as a preprocessor, it is not neccssary to
arrange the set of all the minimal clements of the un-
derlying subposet to solve Prinimax and Pmaximin-

Now, let us describe an efficient implementation of
the naive algorithm.

Algorithm RANGE*(P,k)

Step 1: Decfine the minimax-order and the maximin-
order of P, and give each element in E the index in
the minimax-order. Put J := 0, S := E, range :=
00, o = —00, f:= —o00 and 7 := 1.

Step 2: While S # #, do the following, (2-1) to (2-5).
(2-1): Repeat the following until || = k.

(a) If e; € S and w(e;) < a, then D3(e;).
If e; € S and a < w(e;) < B, then § :=
S —{ei} and J := JU {e;}.
Ife; € S and § < w(e;), then G := w(e;),
S:=8~{e;} and J := J U {e;}.
(b) ¢:=i+ 1. If i > n and |J| < k, then go
to Step 3. If ¢ > n and |J| = k, then go
to (b’).
(2-2): While w(e;) < 8, do the following.
' (a') If e; € S and w(e;) < @, then D3(e;).
If e; € S and @ < w(e;), then §:= S -
{ei}, J := JU{e;}, find the biggest é € J
in the maximin-order and D!(é).
(b’) ¢:=i+ 1. Ifi > n, then call (2-3) and
(2-4), and go to Step 3.
(2-3): Find the min-weight element é € J and
a = w(é). If range > f — a, then range :=
B -« and g*:= 0.
(2-4): While w(é) = o, do D?(é) and find the
min-weight element é € J.
Step 3: Retrieve a min-range ideal by using 3*.

Theorem 4.2: RANGE* (P, k) correctly computes a
min-range ideal of P in O(nlogn + m) time. O

5. Lower Bound

We shall consider a lower bound for Prange-

The closest k¥ numbers problem (Cl(k)): Given n
real numbers and a positive integer k, find k£ num-
bers whose range is smallest.

Lemma 5.1: Cl(k) has an Q(nlogn) lower bound. O

We prove the fact that Cl(k) is n-transformable to
Prange- Therefore, we have the following lemma.

Lemma 5.2: Prapge has an Q(nlogn + m)  lower
bound. (w]

" Theorem 5.3: The algorithm RANGE™Y (P, k) re-

quires §(nlogn + m) time, which is optimal. o
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