Fractional Degree-two Polytopes and Ideal Polytopes of Bidirected Graphs*

02003270 Kazutoshi ANDO[†] (University of Tsukuba)

1. Introduction

A bidirected graph ([2]) $G = (V, A; \partial)$ is a graph with a vertex set V, an arc set A and a boundary operator $\partial: A \to \mathbb{Z}^V$, where for each arc $a \in A$ there exist $v, w \in V$ (called *end-vertices* of a) such that one of the following three holds:

- (1) $\partial a = v + w$ (arc a has two tails at v and w),
- (2) $\partial a = -v w$ (arc a has two heads at v and w),
- (3) $\partial a = v w$ (arc a has a tail at v and a head at w). Here, each $\partial a \in \mathbb{Z}^V$ is represented by an element of a free module with a base V. If v = w in $(1) \sim (3)$, then arc a is called a *selfloop*. For simplicity we do not allow any selfloop of type (3) in the following. See Figure 1.1 for an example of a bidirected graph with $V = \{1, 2, 3, 4\}$.

Recently, Ando, Fujishige and Nemoto [1] showed that the minimum-weight ideal problem on bidirected graphs can be reduced to the minimum-weight ideal problems for ordinary directed graphs.

On the other hand, the concept of degree-two inequalities is introduced by E. L. Johnson and M. W. Padberg [4]. They noticed that there exists a natural correspondence between bidirected graphs and degree-two inequalities.

An inequality of n variables x_1, \dots, x_n is called degreetwo if it is either $x_i + x_j \le 1, -x_i - x_j \le -1$ or $x_i - x_j \le 0$ for some $i, j = 1, \dots, n$. For example, the following is a system of degree-two inequalities.

$$-2x_1 \le -1, -x_1 + x_2 \le 0, x_2 + x_3 \le 1, 2x_3 \le 1, x_3 + x_4 \le 1, x_3 - x_4 \le 0, x_2 - x_3 \le 0.$$
(1.1)

The 0-1 solutions of a degree-two inequalities are of special interest. The stable sets, the node covers, the ideals of a (directed) graph are described as the 0-1 solutions of systems of degree-two inequalities. It should be also noted that degree-two constraints are, in disguise, a complete set of implicants of length at most two ([3]).

In this paper, we consider a relaxation of the 0-1 solutions of degree-two inequalities, namely, we consider the system solution set of degree-two inequalities and the inequalities $0 \le x_j \le 1$ $(j = 1, \dots, n)$, which we call a fractional degree-two polytope.

Figure 1.1: An Example of a Bidirected Graph.

2. Preliminaries

In an obvious way, one can associate a bidirected graph G to a system of degree-two inequalities (see [4]). For our example (1.1) the bidirected graph in Figure 1.1 corresponds. Now a system of degree two inequalities described in terms of a bidirected graph G = (V, A) as

$$\langle \partial a, x \rangle \leq \frac{1}{2} \langle \partial a, \mathbb{1}_V \rangle \quad (a \in A),$$
 (2.1)

where \mathbb{I}_V stands for the all-1 column vector, $\langle \cdot, \cdot \rangle$ is the (canonical) inner product, and ∂a should be regarded as a vector in \mathbb{R}^V . Conversely, given any bidirected graph $G = (V, A; \partial)$, the system (2.1) of inequalities is degreetwo. Hence, from now on, we always associates a bidirected graph G with a system of degree-two inequalities.

Given a bidirected graph $G = (V, A; \partial)$, we call the solution set of the system

$$\langle \partial a, x \rangle \leq \frac{1}{2} \langle \partial a, \mathbb{1}_V \rangle \quad (a \in A),$$
 (2.2)

$$0 \le x(v) \le 1 \quad (v \in V) \tag{2.3}$$

of inequalities a fractional degree-two polytope associated with bidirected graph $G = (V, A; \partial)$ and denote it by FD2P(G).

An ideal polytope IP(G) associated with a bidirected graph $G = (V, A; \partial)$ is defined as the solution set of the system

$$\langle \partial a, x \rangle \le 0 \quad (a \in A),$$
 (2.4)

$$-1 \le x(v) \le 1 \quad (v \in V) \tag{2.5}$$

of inequalities.

We denote by 3^V the set of all the ordered pair of disjoint subsets of V, i.e., $3^V = \{(X,Y) \mid X,Y \subseteq V,X \cap V\}$

^{*}Research supported by a Research Fellowship of Japan Society for the Promotion of Science for Young Scientists.

[†]Institute of Socio-Economic Planning, University of Tsukuba, Tskuba, Ibaraki 305, Japan.

 $Y = \emptyset$. We call each element of 3^V a signed subset of V. An integral solution x of $(2.4)\sim(2.5)$ is made correspond to a signed subset (X,Y) of V as

$$(X,Y) = (\{v \mid v \in V, x(v) = 1\}, \{v \mid v \in V, x(v) = -1\}).$$
(2.6)

and is called an *ideal* of G. An ideal (X, Y) of G is called spanning if $X \cup Y = V$. Let us denote by $\mathcal{I}(G)$ the set of all the ideals of G.

Given a bidirected graph $G = (V, A; \partial)$ and a weight function $w : V \to \mathbb{R}$, the minimum-weight ideal problem ([1]) is defined as follows: Minimize $\{w(X) - w(Y) \mid (X,Y) \in \mathcal{I}(G)\}$.

It follows from the definitions that

Lemma 2.1: For any bidirected graph $G = (V, A; \partial)$ we have $x \in \text{FD2P}(G)$ if and only if $2x - 1_V \in \text{IP}(G)$. Furthermore, for any $w \colon V \to \mathbf{R}$ x is an optimal solution for $\min\{\sum_{v \in V} w(v)x(v)|x \in \text{FD2P}(G)\}$ if and only if $2x - 1_V$ is an optimal solution for $\min\{\sum_{v \in V} w(v)x(v) \mid x \in \text{IP}(G)\}$.

For any subset U of vertex set V the reflection of $G = (V, A; \partial)$ by U is the bidirected graph $G' = (V, A; \partial')$ defined as follows. For each arc $a \in A$, if $\partial a = \pm v \pm w$, we define

$$\partial' a = \pm \epsilon(v)v \pm \epsilon(w)w,$$
 (2.7)

where for each $v \in V$ $\epsilon(v) = 1$ if $v \notin U$ and = -1 if $v \in U$. We denote the reflection G' by G:U.

3. The Integrality of IP(G)'s

Given a bidirected graph $G=(V,A;\partial)$, the signed covering graph $\tilde{G}=(\tilde{V},\tilde{A};\tilde{\partial})$ of G is an ordinary directed graph defined as follows. The vertex set \tilde{V} is given by $\tilde{V}=V\times\{+,-\}$ and the arc set \tilde{A} by $\tilde{A}=\{a^{(+)}\mid a\in A\}\cup\{a^{(-)}\mid a\in A\}$. Moreover, the boundary operator $\tilde{\partial}$ in \tilde{G} is defined as follows: For each $a\in A$, (i) if $\partial a=v-w$, then $\tilde{\partial}a^{(+)}=(v,+)-(w,+),\ \tilde{\partial}a^{(-)}=(w,-)-(v,-);$ (ii) if $\partial a=v+w$, then $\tilde{\partial}a^{(+)}=(v,+)-(w,-),\ \tilde{\partial}a^{(-)}=(w,+)-(v,-);$ (iii) if $\partial a=-v-w$, then $\tilde{\partial}a^{(+)}=(v,+)-(w,+),\ \tilde{\partial}a^{(-)}=(w,+)-(v,+),$

Suppose that we are given a bidirected graph $G = (V, A; \partial)$. Let us consider the linear programming problem (P_w) : Minimize $\{\sum_{v \in V} w(v)x(v) | x \in IP(G)\}$, where $w: V \to \mathbf{R}$ is given weight function. Associated with Problem (P_w) , we define a linear programming problem $(\widehat{P_w})$ as follows.

$$\begin{split} (\widetilde{\mathbf{P}_{w}}): & \text{Min} \quad \sum_{v \in V} (\tilde{w}(v, +) \tilde{x}(v, +) + \tilde{w}(v, -) \tilde{x}(v, -)) \\ & \text{s.t.} \quad \langle \tilde{\partial} \tilde{a}, \tilde{x} \rangle \leq 0 \quad (\tilde{a} \in \tilde{A}), \\ & 0 \leq \tilde{x}(v, \pm) \leq 1 \quad (v \in V), \end{split} \tag{3.1}$$

where $\tilde{w}: \tilde{V} \to \mathbf{R}$ is defined by $\tilde{w}(v,+) = w(v)$, $\tilde{w}(v,-) = -w(v)$ for $v \in V$.

For
$$x \in IP(G)$$
 define $\tilde{x} \in \mathbb{R}^{\tilde{V}}$ by
$$\tilde{x}(v,+) = \max\{0,x(v)\}, \ \tilde{x}(v,-) = -\min\{0,x(v)\}$$
(3.3)

for each $v \in V$.

We call a vector $\tilde{z} \in \mathbf{R}^{\tilde{V}}$ isotropic if for each $v \in V$ $\tilde{z}(v, +)\tilde{z}(v, -) = 0$ holds.

Lemma 3.1: The mapping defined by (3.3) gives a one-to-one correspondence between the set of the optimal solutions of (P_w) and the set of the isotropic optimal solutions of (P_w) .

Theorem 3.2: For any bidirected graph G IP(G) is integral and FD2P(G) is half-integral.

Corollary 3.3: For any bidirected graph G the linear programming problem over FD2P(G) can be reduced to the minimum-weight ideal problem for G, and vice versa.

4. Characterizations of Integral FD2P(G)

A bidirected graph $G = (V, A; \partial)$ is called *balanced* if for some $U \subseteq V$ the reflection G:U of G by U is an ordinary directed graph.

Theorem 4.1: FD2P(G) is integral if and only if G is balanced. \Box

For any $Q \subseteq [0,1]^V$ and $U \subseteq V$ define the negation Q!U of Q at U by $Q!U = \{x!U | x \in Q\}$, where x!U is defined by x!U(v) = 1 - x(v) if $v \in U$ and = x(v) otherwise for each $v \in V$.

Corollary 4.2: For any bidirected graph G FD2P(G) is integral if and only if FD2P(G)! U is an ordinary ideal polytope for some $U \subseteq V$.

References

- [1] K. Ando, S. Fujishige and T. Nemoto: The minimum-weight ideal problem for signed posets. Journal of Operations Research Society of Japan (to appear).
- [2] J. Edmonds and E. L. Johnson: Matching: a well-solved class of linear programs. In: Combinatorial Structures and Their Applications (R. Guy, H. Hanani, N. Sauer and J. Schönheim, eds., Gordon and Breach, New York, 1970), pp. 88-92.
- [3] D. Hausmann: Colouring criteria for adjacency on 0-1 polyhedra. Mathematical Programming Study 8 (1978) 106-127.
- [4] E. L. Johnson and M. W. Padberg: Degree-two inequalities, clique facets, and biperfect graphs. Annals of Discrete Mathematics 16 (1982) 169-187.