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1. Introduction

A bidirected graph ([2]) G = (V,A;d) is a graph with
a vertex set V, an arc set A and a boundary operator
d: A — ZV, where for each arc a € A there exist
v,w € V (called end-vertices of a) such that one of the
following three holds:

(1) 8a = v + w (arc @ has two tails at v and w),

(2) 8a = —v — w (arc a has two heads at v and w),

(3) 8a = v —w (arc a has a tail at v and a head at w).
Here, each da € Z" is represented by an element of a
free module with a base V. If v = w in (1)~(3), then arc
a is called a selfloop. For simplicity we do not allow any
selfloop of type (3) in the following. See Figure 1.1 for
an example of a bidirected graph with V = {1,2,3,4}.

Recently, Ando, Fujishige and Nemoto [1] showed that
the minimuin-weight ideal problem on bidirected graphs
can be reduced to the minimum-weight ideal problems
for ordinary directed graphs.-

On the other hand, the concept of degree-two inequal-
ities is introduced by E. L. Johnson and M. W. Pad-
berg [4]. They noticed that there exists a natural cor-
respondence between bidirected graphs and degree-two
incqualities.

An inequality of n variables z;,-- -, z,, is called degree-
two if it is either z;+7; < 1, —z;—2; < —lorz;—z; <0
for some i,7 = 1,---,n. For example, the following is a
system of degree-two inequalities.

-2z, < -1,-71 4+ 1, L0, z0+ 23 < 1,235 1,
T3+ 14 <1,23—24<0,29~23L0.
(1.1)
The 0-1 solutions of a degree-two inequalities are of
special interest. The stable sets, the node covers, the
ideals of a (directed) graph are described as the 0-1 solu-
tions of systems of degree-two inequalities. It should be
also noted that degree-two constraints are, in disguise, a
complete set of implicants of length at most two ([3}).
In this paper, we consider a relaxation of the 0-1 solu-
tions of degree-two inequalities, namely, we consider the

solution set of degree-two inequalities and the inequali- -

ties0<2; <1 (j=1,--+,
degree-two polytope.

n), which we call a fractional
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Figure 1.1: An Example of a Bidirected Graph.

2. Preliminaries

In an obvious way, one can associate a bidirected graph
G to a system of degree-two inequalities (see [4]). For
our example (1.1) the bidirected graph in Figure 1.1 cor-
responds. Now a system of degree two inequalities de-
scribed in terms of a bidirected graph G = (V, A) as
(9a,7) < :,12-(60., 1) (a€ A), (2.1)
where 1y stands for the all-1 column vector, (-,-) is the
(canonical) inner product, and da should be regarded as
a vector in RV. Conversely, given any bidirected graph
G = (V, A; 9), the system (2.1) of inequalities is degree-
two. Hence, from now on, we always associates a bidi-
rected graph G with a system of degree-two inequalities.
Given a bidirected graph G = (V, 4;9), we call the
solution set of the system

(9a,z) < 3(0a,1y) (a€ A),
0<z(v) <1 (vevV)

(2.2)
(2.3)

of inequalities a fractional degree-two polytope associated
with bidirected graph G = (V, A4;9) and denote it by
FD2P(G).

An ideal polytope IP(G) associated with a bidirected
graph G = (V, A; 9) is defined as the solution set of the
system

(0a,z) <0 (a € A),
-1<z(v) <1 (veV)

(2.4)
(2.5)
of inequalities.

We denote by 3" the set of all the ordered pair of
disjoint subsets of V, i.e.,, 3V = {(X, V)| X, Y CV,X N
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= (0}. We call each element of 3V a signed subset of V.
An mtegral solution x of (2.4)~(2.5) is made correspond
to a signed subset (X,Y) of V as

(X,Y)=({v|veV,a(w)=1},{v|ve V) = -1}).
(2.6)
and is called an ideal of G. An ideal (X,Y) of G is called
spanning if X UY = V. Let us denote by I(G) the set
of all the ideals of G.

Given a bidirected graph G = (V| A; 9) and a weight
function w V — R, the minimum-weight ideal
problem ([1]) is defined as follows: Minimize{w(X) —
w(Y) | (X,Y) € I(G)}.

It follows from the definitions that

Lemma 2.1: For any bidirected graph G = (V, A; 9) we
have x € FD2P(G) if and only if 2z — 1y € IP(G). Fur-
thermore, for anyw: V — R z is an optimal solution for
min{¥ ey w(v)z(v)|z € FD2P(G)} if and only if 2z—1y
is an optimal solytion for min{y .y w(v)z(v) |z €
IP(G)}. , o

For any subset U of vertex set V' the reflection of G =
(V, A;8) by U is the bidirected graph G' = (V, A;8)
defined as follows. For each arc a € A, if da = v £ w,
we define

d'a=te(v)vE e(tujtu, (2.7)

where for ecach v € V e(v) = 1if v ¢ U and = -1 if
v € U. We denote the reflection G’ by G:U.

3. The Integrality of IP(G)’s

Given a bidirected graph G = (V, 4, 9), the signed cov-
ering graph G = v, A;8) of G is an ordinary directed
graph defined as follows. The vertex set V is given by
V =V x {+,—} and the arc set A by A = {a™® |a €
A}U{a™)|a € A}. Moreover, the boundary operator d in
G is defined as follows: For each a € A, (i) if 9a = v—w

then 8a*) = (v,+) — (w,+), 8al™) = (w,-) — (v,-);
(i) if da = v + w, then da™) = (v, +) — (w, =), Ba( ) =
(w,+) — (v,-); (iii) if da = —v — w, then daH =

(v,=) = (w,+), 8a) = (w, =) - (v, +).

Suppose that we are given a bidirected graph G =
(V, A;8). Let us consider the linear programming prob-
lcm (Py) : Minimize{L ey w(v)z(v)|z € IP(G)}, where

: V — R is given weight function. Associated with
Problem (Pw), we define a linear programming problem
(P,,) as follows.

(I”:) Min ) (@(v, +)Z(v, +) + w(v, —)Z(v, -))
vev .
st. (9a,7) <0 (aeA), (3.1)
0< i(v,£) <1 (veV), (3.2)
where ¢ V. — R is d‘eﬁned by w(v,+) = w(v),
w(v,—) =

—w(v) forveV.

For z € IP(G) define € RV by

(v, +) = max{0, z(v)}, #(v,~) = —min{0, ¥(v)}
- (3.3)
for eachv € V. )
We call a vector # € RY isotropic if for each v € V

(v, +)Z(v, —) = 0 holds.

Lemma 3.1: The mapping defined by (3.3) gives a one-
to-one correspondence between the set of the optimal so-
lutions of (P,) and the set of the zsotropzc optimal solu-

tions of (Py). 0
Theorem 3.2: For any bidirected graph G IP(G) is in-
tegral and FD2P(G) is half-integral. a

Corollary 3.3: For any bidirected graph G the linear
programming problem over FD2P(G) can be reduced
to the minimum-weight ideal problem for G, and vice
versa. 0o

4. Characterizations of Integral

FD2P(G)

A bidirected graph G = (V, A4; 9) is called balanced if for
some U C V the reflection G:U of G by U is an ordinary
directed graph.

Theorem 4.1: FD2P(G) is integral if and only if G is
balanced. : o

For any @ C [0, I]V and U C V defince the negation QU
of Q at U by QU = {z!U|x € Q}, where x!U is defined
by x!1U(v) =1~ z(v) if v € U and = z(v) otherwise for
eachv € V. )

Corollary 4.2: For any bidirected graph G FD2P(G) is
integral if and only if FD2P(G) ! U is an ordinary ideal
polytope for some U C V. u]
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