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Computing the Tutte Polynomial of a Graph and the All-Terminal Network Reliability

1 Tutte polynomial of a graph

For a graph & = (V, E) with vertex set V7 oand edge
set [, the Tutte polynomial of graph G is a two-variable
polynomial T(G; x, y) defined by

T(G;w,y) = Z (x - l)l'( EY=pt l\l(” - l)l-"l_l'( A
ACE
where p: 2% = Z is the rank function of graph G. i.e..
p(A) is the nmmber of edges in a spanning forest of sub-
graph ol adge st A, The problem of compnting the Tutte
polynomial of a graph has bheen a hot topie in reeeut
years. The following invariants are some special cases of
the Tutlle polynomial, and the values of this polynomial
al some specific points have important meanings (see [6)).
(Special cases of the Tutte polynomial)
o the chromatic polynomial, flow polynomial of i graph
o the all-terminad network veliability
o the Jones polynmmial of i alternating link
o the partition lunction of a Q-state Potts model
o Lhie weight emunerator of a lincar code over GF(y)
(the Tutte polynomial at specific points)
o T(G;1,1) counts the nuber of trees of G, which is
polynomially compntable.
o T(G;2,1) counts the number of forests of G, which is

#P-hard to compute.

Thic computation problem of the Tutte polynomial is
#P-laud in general {6). There have been known only al-
gorithims which require at least time proportional to the
number of trees of a given graph, whicl is intrinsically ex-
pouncntial. Recently, a polynomial-time randomized ap-
proximation scheme is proposed for dense graphs [1] and
denscly connccted graphs [2]. Although it may compute
an approximate value for large dense graphs, there is no
algorithm which can exactly compute the Tutte polyno-
mial of a graph of moderate size.

In this paper, we present a new algorithm by wlilizing a
fact that many 2-isomorphic minors appear in computing
the Tutte polynomial of a graph by the so-called edge
deletion/contraction formula. By this algovithm, we can
compute the Tutte polynomial of any graph with at wost
14 vertices and (‘;) = 91 cdges and that of a planar
graplusuch as 12 x 12 lattice graph with 144 vertices and
2-12-11 = 264 cdges by a standard workstation within
about an hour.

Since the all-terminal network reliahility is w special
case of the Tutte polynomial of a graplh, the above results
carry over to the computation problem of all-terminal
network reliability. We can generalize this approach to
compute many types of nctwork reliability.

2 Algorithm and Computational Results
For an cdge e in E, we denote by G\e the graph ob-
tained by deleting e from G, and by G/c the graph ob-
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tained by contracting ¢ from G. For an cdge e in E, the
lollowing recursive formula holds.

xT(G ez, y)

yT(C\e; z, )

T(G\e; e, y) + T(G/eiw.y)
Here, a loop is an edge connecting the same vertex, and
a coloop is an edge whose removal decreases the rank of
the graph by 1.

Suppose we apply the recursive formula in the or-
der of ey ey, e (i = |E]) in a top-down fashion,
which [orms i binary expansion tree. Nodes in the i-th
level in tie expansion tree correspond to minors of G
on {eigr.Cigzeeeny G} (the O-th level is a root). These
minors consist of the sane edge sct, and some of them
way he Z-isomorphic under the identity map, i.e.. their
families of trees are identical. Concerning 2-isomorphic
graphs, the following holds.

e: coloop
e:loop
otherwise

T(Giwyy) =

Lemma 1 Two Z-isomorphic graphs heve the same
Tutte polynomial.
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Figure 1: BDD of trees for vy
Hence, in the i-th level in this expansion, we may rep-
resent. 2-isomorphic minors among them by one of these
members. By this modification, redundant computation
ol the same Tutte polynomial of 2-isomorphic graphs can
be removed. Furtheriore, testing the 2-isomorphisin of
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two minors of the same edge set under the identity map
can be done by testing the equivalence of partitions of a
vertex subset induced by deletions and contractions. For
details, sce [3, 4, 5]. Then, we can share the same sub-
structures in the expansion by using the 2-isomorphism,
and obtain a directed acyclic graph instead of the expan-
sion tree. This acyclic graph is called the BDD of trees.
See an example of the BDD for L in Fig.1 where cdges
should be regarded as directed downwards.

Based on the above observation, the BDD of all trees
of G can be constructed in a top-down and breadth-first
fashion. Then, the Tutte polynomial can also he com-
puted as in Fig.1. The width of BDD is defined to be the
maximum number of nodes in a level, which is 5 in this
example. The width for L, can be bounded by using
thie Bell number By which is the number of partitions of
k-clement set.

Theorem 1 For n > 12. the width of the BDD of trees
of K,y for some edge ordering is bounded by B,y

Table 1: The size of BDD of trees of i,

n BDD B, _, BDD number of

width size trees

2 1 - 2 1

3 2 (1) 6 3

4 5 (2) 20 16

5 14 (5) 67 125

6 42 (15) 225 1296

7 130 (52) 774 16807

8 406 | - (203) 2765 262144

9 1266 (877) 10292 4782969

10 3926 [4140] 39891 10°
11 15106 | [21147] 160837 | = 2.36 x 10°
12 65232 115975 673988 | =~ 6.20 x 10'¢
13| 279982 | 678570 2932313 | = 1.79 x 10'?
14 | 1191236 | 4213597 | 13227701 | = 5.67 x 10"?

We have computed the size of BDD of trees of A, wp
to n = 14 by the algorithm proposed here. The values
are given in Table 1. The cfliciency of our algorithm can
be seen from these numbers well. We can generalize this
for a general case.

Corollary 1 For any sunple counected graph G with n
vertices (n. 2 10), there cxists an cdye ordering for which
the width of the BDD of trces of G s bounded by B, _,.

Next, consider a k x £ lattice Ly p. For this very typ-
ical planar graph, by using a natural cdge ordering, we
can shiow the following, where C is the Catalan number

defined to be 1‘;(2,:“'__]2)‘

Theorem 2 The width of BDD of Ly 1. is at most Cryy .

Again, to demonstrate that our algorithm cau solve
moderate-size cases here, we have computed the size of
BDD of trees of Ly up to k = 12, i.c., up to.144 vertices,
by our algorithm. The values are given in Table 2. The
efficiency of our algorithm can be seen from these num-
hers quite well. This result can be further generalized for
planar graphs.

Table 2: BDD of trees of kx k lattice graph Ly . of n = &k

vertices

k n | BDD width | BDD size number of

(= Cr41) BDD trees

2 4 2 8 4

3 9 5 47 192

4 16 14 252 100352

5 25 42 1260 557568000

6 36 132 6002 | =~ 3.26 x-10'3

N 49 429 27646 | =~ 1.99 x 10'?

8 64 1430 124330 | ~ 1.26 x 10%¢

9 81 4862 549382 | =~ 8.32 x 10%3

10 | 100 16796 2395385 | & 5.69 x 1042
11§ 121 58786 | 10336173 | =~ 4.03 x 1052
12 | 144 208012 | 44232654 | =~ 2.95 x 10%

Theorem 3 The Tutte polynomial of a planar graph of
n wertices can be computed in Q(200YM) time.

3 All-terminal network reliability

For a comnected graph G = (V, E), let R(G;p) be the
probability that, when each edge is deleted with probabil-
ity 1 —p, the remaining graph is still connected. R(G;p)
is called the all-terminal network reliability. The compu-
tation of this reliability is #£P-hard in general, and there
are many papers on computing lower bounds, etc.

R(G; p) can be expressed by the Tutte polynomial as
R(Gip) = (1= p)PEVHIVIFIT(G 1, 1/(1 - p))
(see [6]). and hence our algorithin can be used to compute
the reliability of a graph of moderate size. Furthermore,
the algorithm can be extended to the case that probabil-
ity of deletion differs at each edge. This general case will

be discussed elsewhere.
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