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1 Imtroduction

Let X be a set of feasible solutions in IR" defined by a
system of linear inequalities such that 0 € int(X). Also that

1 2

cl, ¢2,---, c* be k independent vectors in R“, and let X°

be the efficient set of the following muiti-objective program
('), i=1,---,k

z € X.

maximize

subject to

We are interested in solving the following program

minimize{{c,z) |z € X°}.

(1

Define
k
d= Zc", c(s) = ¢ + sd,
i=1

Cc® = {I €R" | (c‘(s),x) S 0 Vi= 1"")}“}1
X° =X \int(X + C°).

If the perturbation parameter s is small, then X? = X° and
the program (1) is equivalent to the following perturbated
program

minimize{{c,z), |z € X°}.

(2)
A perturbation parameter s satisfying X® = X~ is said to
be valid. It is known that this parameter is valid if it is pos-
itive and small enough. The program (2) is easier than (1)
because of no duality gap. A valid perturbation parameter
could be very small, and therefore it may cause numerical
difficulty. In order to obtain a more computationally reliable
algorithm, we use a lexicographic ordering approach. This
well-known approach helps us to find an optimal solution
without worrying about the specific value of the perturba-

tion parameter.
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2 Dual Representations

For a given perturbation s we define

Ve = {UER" sup —(0,1)51},
T€X+C?®
9(v) = inf{(c,z)]| (v,2) 21, z € X}.

Then, V? is a polytope and g(-) is a quasi-concave function.

A dual program of the program (2) is (1]

min{g(v) | ve V°}. (3
For a valid perturbation parameter s one has
min{g(v) | v € V*} = min(1). (4)

In the sequel, we present another dual representation which
is more convenient to interpret in term of lexicographic or-
dering.

For any t > 0 we define

k
U‘:{HZXA'.C!' SUP(“J)SI,/\izt V’i‘—'-‘l,"',k},

i=1 e X
(5)
getting the following dual program
min{g(u)|u € U'}. (6)
The dual (5)-(6) can be rewritten as
minimize  G(}),
) (M)
subject to A € AY,
where for A ¢ R*
G(A\) = inf{{c,z) <z:‘=l A;c‘,z) 2l ze X },
At = {xe R 5 ai(chz) <1 Ve e X,
N>t Vi= l,~--,k}.
(8)

G(-) is a quasi-concave function on R¥, At is a polytope in

R¥. For t > 0 small enough one has
min(7) = min(1),

and if A® solves (7) then any solution of
k
min ¢ (c,z) z/\?(ci,z) >, z€e X
i=1

solves (1).
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3 Lexicographic Rule

We denote by I'* the set of vertices of A!. Each vertex
A € T'! corresponds to a basic feasible solution and it can be
represented as A = o 4 t. The set of such vectors (a, )
is called the shadow of I'*. It has been known that there is
to > 0 such that for any t € (0,1g] the system
) 3
Y o dildia) <1 VreZ A2t Vi1, k
i=1
- has the same basic feasible solutions, hence I'* has the same
shadow I'. Let A be the convex hull of I'. The set A is
called the shadow of A! with ¢ > 0 small enough. For each
(e, 8) € R* x R* we define h(a,8) € R2:

k k
h(a,B) = lexi:cg-xmin (Za.‘(c",x),Zﬂ;(ci,z)) . (9)

i=1 i=1
} (10)

There is tg > 0 such that the program (10) has the same

Let us consider the following parametric LP

k
min {(C,l‘) E(ai + tﬁ;)(c‘,z) 2lLreX

i=1

optimal simplex tableau and the optimal value G(o + t3)
has the following form for any t € (0,1¢]

01(a,B) if G(a + 1B) is constant of t € (0, o]

Gla+if) = l
(a+10) e B+ e B+ i83(a D)

otherwise,

where 63(a,3) # 0.
We define a function F: R* x R* = R x R.

(+00,0) if h(~e,—B) > (~-1,0)
(81(,8),0) if h(—a,~B) X (—1,0)
and G(a + tf) is constant of t € (0, g}

[ , .
(01 (e, 8) + W, —32-%%‘—%%) otherwise.

F(o,B8) =

The function F(-) is called the shadow of G(-).
Using the shadow A of A! and the shadow F of G we can

interpret the dual program (7) as follows

lexico-minimize{ F(a, 8)|(a,3) € T}. (11)

This program is called the shadow of the dual program (7).
Since F is quasi-concave and A is the convex hull of T', an
optimal solution of this problem is also a lexicographical

minimizer of F(-) on A.

4 Relaxation Algorithm

Let Z; be a subset of Z siich that the relaxation A% of A':

{,\eR“

/\,'ZfVi:l,."-,k}

k

ZA.(c‘,z)s 1Vz € Zj,

i=1

t e
A] =

is bounded. I‘;- is the set of vertices of A;.. Set A; =

conv(lj). A; is a relaxation of A. If h(e,B) < (1,0) for
(a,pB) € T, then (a,8) €T.

Relaxation Algorithm

Iteration j (j = 1,2,-.:) This iteration is entered with a
subset Z; of Z which defines A;-, and T of feasible

basic solutions of A} with ¢ > 0 small enough.

Step a For any (a,) € T'; we compute F(a,ﬂ) by solving

the parametric LP (10) in which ¢ is supposed to be
If F(a,8) < (400,0),
then denote by z(a, ) the optimal solution of (10)

positive and small enough.

with ¢t > 0 small enough.

Step b Define (o, 87) such that
F(a?, %) = lexico-min{F(a,8) | (a,B) € T;}

Step ¢ Solve

k k
| lexizcg;nin {Z al (C"I)'gﬂg (c-’z)}

i=1
obtaining its optimal value h(a?,47) and its optimal

basic solution 7.
Step d If h(a?,B7) < (1,0) then stop: z(a?,B?) is optimal
to (1), else update Z;4 = Z; U zJ,

Step e Define a new relaxation

k
re R¥ Z,\.-(c",z) <1 Vz€Zjn

=1

A >t Vi=1,---,k},

! —
Ay =

and compute I';;;. Go to iteration j + 1.
If h(a?,B7) < (1,0) then z(a?,B?) does not depend on
the parameter and it solves (1). The relaxation algorithm
terminates after finitely many iteration yielding an optimal

solution of the program (1).
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