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1. Introduction

This study presents an optimal boundary for the
optimal stopping problem that accounts for model un-
certainty. Model uncertainty is the uncertainty affect-
ing model assumptions, e.g., the assumed form of the
probability distribution and the parameters embedded
in the probability distribution. We can use this bound-
ary to make a statistical arbitrage strategy more ro-
bust.

Our contribution in this study is to present the most
diverted point from the mean-reversion point by solv-
ing the optimal stopping problem in a finite time hori-
zon, taking into account model uncertainty.

More precisely, we utilize the method of [2], who
discuss it in the context of convex risk measures.
Specifically, we replace the estimated model with
a model similar to but different from the estimated
model. If we are sure about the estimation, then we
adopt a model that is very similar to the estimated
model. If not, then we adopt a very different scenario
incorporating the worst-case scenario, thus reducing
profit. This policy may make the trading code ro-
bust. In this formulation, we use Kullback–Leibler
divergence to describe the similarity between models
and incorporate the minimizing principle related to
robustness.

In addition to [2], inspired by [1], [3], and [4], we
developed a technique for obtaining the explicit form
of the solution to the boundary implying the maxi-
mum expected value of the portfolio, which can be
used as a benchmark to take a position. Furthermore,
we show that the implication of this type of prob-
lem is consistent with the certainty equivalent, which
leads to the risk premium in the context of expected
utility with risk. This property might induce a clear
connection between the contexts of risk and uncer-
tainty.

2. Main results

Let us consider a complete, filtered probability
space, (Ω,F , P), F = {Ft}t≥0, and on it a bounded,
adapted process, X, that satisfies certain regularity
conditions. For this process, we consider the follow-

ing optimal stopping problem:

Vλ(t, x) ≜ ess supτ∈St,T
ess infQ∈Qt{

EQ[Yτ|Ft] +
1
λ
EQ

[
log

(
dQ
dP

) ∣∣∣∣Ft

]}
, P − a.s. (1)

Here, St,T is the set of stopping times τ satisfying
t ≤ τ ≤ T, P− a.s.; Qt is the collection of probability
measures Q that are equivalent to P on F , equal to P
on Ft, and satisfy a certain integrability condition; Y
is a discounted process of X with the discount factor
ρ > 0, i.e., Yt = e−ρtXt for 0 ≤ t ≤ T ; λ > 0 is a
constant; and dQ/dP is the density of Q ∈ Qt with
respect to P. That is, the density process ZQ of Q
is the stochastic exponential of a predictable process,∫ ·

0 θ
Q
s dBs, such that

ZQ
t = exp

{∫ t

0
θQs dBs −

1
2

∫ t

0
|θQs |2ds

}
, 0 ≤ t ≤ T,

andZQ
T = dQ/dP.

Our main aim is to find the explicit solution to (1)
by specifying X as an Ornstein-Uhlenbeck (OU) pro-
cess, such that

dXt = α(µ − Xt)dt + σdBt, (2)

where α, σ > 0, µ ∈ R and B is a Brownian motion
defined on probability space (Ω,F , P).
Theorem 2.1. Let X be given by (2). Then, the solu-
tion to (1) is given by

Vλ(t, x) = − 1
λ

log
(
e−λe

−ρ(T−t)mx(T−t,x)+ λ
2e−2ρ(T−t)

2 σx(T−t)2

−
∫ T−t

0
K x(u, x, bx(t + u))du

)
, (3)

where we define

mx(u, x) ≜ xe−αu + µ(1 − e−αu), σx(u) ≜

√
σ2

2α
(1 − e−2αu)

which are the mean and volatility, respectively, of
Xt,x = X conditioned on Xt = x. We also define the
kernel

K x(u, x, b) ≜ Et
[
µx

(
u, Xt,x

u

)
I(Xt,x

u ≥ b)
]
,
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where µx(u, y) ≜
−λ

(
αe−ρuµ − λ2σ2e−2ρu − (α + ρ)e−ρuy

)
exp

(−λe−ρuy
)
,

the operator Et[·] is E[·|Ft], and bx(t) is given by the
following equation:

bx(t) = log
(
e−λe

−ρ(T−t)mx(T−t,bx(t))+ λ
2e−2ρ(T−t)

2 σx(T−t)2

−
∫ T−t

0
K x(u, bx(t), bx(t + u))du

)−1/λ

, (4)

and

bx(T ) =
αµ − λ2σ2

α + ρ
.

3. Implications
The main results indicate the most divergent point.

Since Vλ(t, x) of (1) is essentially the expected value
of the portfolio, if Vλ(t, x) were higher than the cur-
rent portfolio value of Xt, then the portfolio value
would increase if the investor waits. In other words,
Vλ(t, x) = x implies the time to attain the expected
maximum value of X. The boundary bx(t) given in
(4) identifies the maximum value since Vλ(t, bx(t)) =
bx(t).

Eq. (3) yields

e−λV
λ(t,x) = e−λx

+ Et

[∫ T−t

0
de−λe

−ρuXt,x
u I(Xt,x

u < bx(t + u))
]
.

The above implies a structure similar to the certainty
equivalent by regarding the integrand of the right-
hand side as the accumulated expected utility of the
exponential utility with risk aversion λ and the value
function Vλ(t, x) as the certainty equivalent.

4. Numerical examples
In this section, we present a few numerical exam-

ples to illustrate the properties of our model. Here,
we assume that we only know that the OU process
gives the form of the portfolio value process and that
we might mistakenly estimate the model parameters.
A larger λ value implies anxiety regarding the agent’s
misspecification of the parameters. The minimum
value λ = 0.0 means that the agent is perfectly confi-
dent in his or her estimation.

Let us consider the case in which the actual port-
folio value process is driven by dXt = −40Xtdt +
0.15dBt. The other parameters are ρ = 0.01 and
T = 1. First, we assume that we can precisely
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Figure 1: Optimal boundaries when agents know the
true parameters.

estimate the parameters, i.e., that our estimates are
α̂ = 40, µ̂ = 0.0 and σ̂ = 0.15.

Next, we consider the case in which the agent mis-
takenly estimates model parameter α, which is the
speed of mean reversion. Figure 2 shows two cases
for this.
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Figure 2: Optimal boundaries when agents mistak-
enly estimate parameter α, where the “boundary for
correct estimation” is the optimal boundary with λ =
0 for the true parameters. The left panel shows
boundaries using the estimated α̂ = 50, and the right
panel shows those using the estimated α̂ = 16 for the
true value α = 40.
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