Execution game in a Markovian environment

 01007984 大阪大学 大学院経済学研究科 数理・データ科学教育研究センター
 05001073 東京都立大学 大学院経営学研究科

1. Introduction

In a discrete time framework $t \in \{1, \ldots, T, T+1\}$ $(, T \in \mathbb{Z}_{++} := \{1, 2, \ldots\})$, we assume that two large traders, denoted by $i \in \{1, 2\}$, purchase one risky asset in a trading market. Each large trader has a CARA vN-M (or negative exponential) utility function with the absolute risk aversion parameter $\gamma^i > 0$.

2. Model

Each large trader must purchase $\mathfrak{Q}^i (\in \mathbb{R})$ volume of one risky asset by the time T + 1. $q_t^i (\in \mathbb{R})$ stands for large amount of orders of submitted by the large trader $i \in \{1, 2\}$ at time $t \in \{1, \ldots, T\}$. We denote by \overline{Q}_t^i the number of shares remained to purchase by the large trader at time $t \in \{1, \ldots, T, T+1\}$. So

$$\overline{Q}_{t+1}^i = \overline{Q}_t^i - q_t^i,\tag{1}$$

with the initial and terminal conditions: $\overline{Q}_1^i = \mathfrak{Q}^i \in \mathbb{R}$; $\overline{Q}_{T+1}^i = 0 \in \mathbb{R}$, for each large trader $i \in \{1, 2\}$.

The market price of the risky asset at time $t \in \{1, \ldots, T, T+1\}$ is P_t . Then, the execution price of the asset becomes \hat{P}_t . We assume that submitting one unit of (large) order at time $t \in \{1, \ldots, T\}$ causes the instantaneous price impact denoted as $\lambda_t (> 0)$.

We subsequently define the residual effect of past price impact caused by both large traders at time $t \in$ $\{1, \ldots, T\}$, represented by $R_t \in \mathbb{R}$. The dynamics of R_t for $t \in \{1, \ldots, T\}$ is defined as:

$$R_{t+1} = e^{-\rho} \left[R_t + \alpha_t \lambda_t \left(q_t^1 + q_t^2 \right) \right], \qquad (2)$$

where $\alpha_t \in [0, 1]$ represents the linear price impact coefficients representing the temporary price impacts.

Furthermore, we define a sequence of independent random variables ϵ_t at time $t \in \{1, \ldots, T\}$ as the effect of the public news/information about the economic situation between t and t + 1. ϵ_t for $t \in$ $\{1, \ldots, T\}$ are assumed to follow a normal distribution with mean $\mu_t^{\epsilon} \in \mathbb{R}$ and variance $(\sigma_t^{\epsilon})^2 \in \mathbb{R}_{++}$,

$$\epsilon_t \sim N\left(\mu_t^{\epsilon}, \left(\sigma_t^{\epsilon}\right)^2\right), \quad t = 1, \dots, T.$$
 (3)

大西 匡光 OHNISHI Masamitsu

*下清水 慎 SHIMOSHIMIZU Makoto

A Markovian environment, denoted by \mathcal{I}_t , influences the fundamental price. The distribution of \mathcal{I}_t is assumed to have a Markovian dependence:

$$\mathcal{I}_{t+1}|_{\mathcal{I}_t} \sim N\left(a_{t+1}^{\mathcal{I}} - b_{t+1}^{\mathcal{I}}\mathcal{I}_t, \left(\sigma_{t+1}^{\mathcal{I}}\right)^2\right).$$
(4)

Assumption 2.1. \mathcal{I}_t and ϵ_t are *correlated* for each $t \in \{1, \ldots, T\}$. In addition, no other sequential dependence between two stochastic sequences exists.

By definition of ϵ_t , we define the dynamics of the fundamental price $P_t^f := P_t - R_t$ with a Markovian environment and the permanent price impact for time $t \in \{1, \ldots, T\}$ as follows:

$$P_{t+1}^{f} := P_{t}^{f} + \beta_{t} \lambda_{t} \left(q_{t}^{1} + q_{t}^{2} \right) + \mathcal{I}_{t} + \epsilon_{t}.$$
 (5)

According to Eq. (2) and (5), the dynamics of market price for $t \in \{1, ..., T\}$ are described as

$$P_{t+1} = P_t - (1 - e^{-\rho})R_t + \left(\alpha_t e^{-\rho} + \beta_t\right)\lambda_t \left(q_t^1 + q_t^2\right) + \mathcal{I}_t + \epsilon_t$$
(6)

The wealth process for each large trader $i \in \{1, 2\}$, $W_t^i \ (\in \mathbb{R})$, for $t \in \{1, \ldots, T\}$ evolves as follows:

$$W_{t+1}^{i} = W_{t}^{i} - \widehat{P}_{t}q_{t}^{i} = W_{t}^{i} - \left\{P_{t} + \lambda_{t}\left(q_{t}^{1} + q_{t}^{2}\right)\right\}q_{t}^{i}.$$
 (7)

3. Formulation as a Markov game

We define the state of the decision process at time $t\in\{\,1,\ldots,T,T+1\,\}$ as 7–tuple and denote it as

$$\boldsymbol{s}_{t} = \left(W_{t}^{1}, W_{t}^{2}, P_{t}, \overline{Q}_{t}^{1}, \overline{Q}_{t}^{2}, R_{t}, \mathcal{I}_{t-1}\right) \in \mathbb{R}^{7} =: S.$$
(8)

For $t \in \{1, \ldots, T\}$, an allowable action chosen at state s_t is an execution volume $q_t^i \in \mathbb{R} =: A^i$ so that the set A^i of admissible actions is independent of the current state s_t . When an action q_t^i is chosen in a state s_t at time $t \in \{1, \ldots, T\}$, a transition to a next state: $s_{t+1} = (W_{t+1}^1, W_{t+1}^2, P_{t+1}, \overline{Q}_{t+1}^1, \overline{Q}_{t+1}^2, R_{t+1}, \mathcal{I}_t) \in S$ occurs according to the law of motion which we have precisely described in the previous subsection. A utility payoff (or reward) arises only in a terminal state s_{T+1} at the end of horizon T+1 as

$$g_{T+1}^{i}(\boldsymbol{s}_{T+1}) := \begin{cases} -\exp\{-\gamma^{i}W_{T+1}^{i}\} & \text{if } \overline{Q}_{T+1}^{i} = 0; \\ -\infty & \text{if } \overline{Q}_{T+1}^{i} \neq 0, \end{cases}$$
(9)

where $\gamma^i > 0$ represents the risk aversion parameter for the large trader $i \in \{1, 2\}$. The term $-\infty$ means a hard constraint enforcing the large trader to execute all of the remaining volume \overline{Q}_T^i at the maturity T. The types of large traders could be defined by $(W^i, \mathfrak{Q}^i, \gamma^i), i \in \{1, 2\}$, and these are assumed to be their common knowledge.

If we define a (history-independent) one-stage decision rule f_t at time $t \in \{1, \ldots, T\}$ by a Borel measurable map from a state $s_t \in S = \mathbb{R}^7$ to an action

$$q_t^i = f_t^i(\boldsymbol{s}_t) \in A = \mathbb{R},\tag{10}$$

then a Markov execution strategy π is defined as a sequence of one–stage decision rules

$$\pi^{i} := (f_{1}^{i}, \dots, f_{t}^{i}, \dots, f_{T}^{i}).$$
(11)

We denote the set of all Markov execution strategies as Π_{M} . Further, for $t \in \{1, \ldots, T\}$, we define the subexecution strategy after time t of a Markov execution strategy $\pi \in \Pi_{\mathrm{M}}$ as

$$\pi_t^i := (f_t^i, \dots, f_T^i), \tag{12}$$

and the entire set of π_t^i as $\Pi_{M,t}^i$.

By definition (9), the value function under an execution strategy profile $(\pi^1.\pi^2)$ becomes an expected utility payoff arising from the terminal wealth W_{T+1} :

$$V_1^i(\pi^1, \pi^2)[\mathbf{s}_1] = \mathbb{E}_1^{(\pi^1, \pi^2)} \Big[g_{T+1}^i(\mathbf{s}_{T+1}) \Big| \mathbf{s}_1 \Big], \quad (13)$$

where, for $t \in \{1, \ldots, T\}$, $\mathbb{E}_t^{(\pi^1, \pi^2)}$ is a conditional expectation given a condition at time t under the strategy profile (π^{1*}, π^{2*}) .

For $t \in \{1, \ldots, T, T+1\}$ and $s_t \in S$, we let

$$V_t^i(\pi_t^1, \pi_t^2)[\mathbf{s}_t] = \mathbb{E}_t^{(\pi_t^1, \pi_t^2)} \Big[g_{T+1}^i(\mathbf{s}_{T+1}) \big| \mathbf{s}_t \Big], \quad (14)$$

be the expected utility payoff at time t.

Definition 3.1 (Nash Equilibrium). $(\pi^{1*}, \pi^{2*}) \in \Pi^1_M \times \Pi^2_M$ is a Nash equilibrium starting from a fixed initial state s_1 if and only if

$$V_{1}^{1}(\pi^{1*},\pi^{2*})[\mathbf{s}_{1}] \geq V_{1}^{1}(\pi^{1},\pi^{2*})[\mathbf{s}_{1}], \quad \forall \pi^{1} \in \Pi_{\mathrm{M}}^{1}; \quad (15)$$
$$V_{1}^{2}(\pi^{1*},\pi^{2*})[\mathbf{s}_{1}] \geq V_{1}^{2}(\pi^{1*},\pi^{2})[\mathbf{s}_{1}], \quad \forall \pi^{2} \in \Pi_{\mathrm{M}}^{2}. \quad (16)$$

Definition 3.2 (Markov Perfect Equilibrium). $(\pi^{1*}, \pi^{2*}) \in \Pi^1_M \times \Pi^2_M$ is a Markov perfect equilibrium if and only if for all $t \in \{1, \ldots, T\}$ and for all $s_t \in S$,

$$V_t^1(\pi_t^{1*}, \pi_t^{2*})[\mathbf{s}_t] \ge V_t^1(\pi_t^1, \pi_t^{2*})[\mathbf{s}_t], \quad \forall \pi_t^1 \in \Pi^1_{\mathrm{M}, t}, \quad (17)$$
$$V_t^2(\pi_t^{1*}, \pi_t^{2*})[\mathbf{s}_t] \ge V_t^1(\pi_t^{1*}, \pi_t^2)[\mathbf{s}_t], \quad \forall \pi_t^2 \in \Pi^2_{\mathrm{M}, t}. \quad (18)$$

Based on the One Stage [Step, Shot] Deviation Principle, we obtain an equilibrium execution strategy at a Markov perfect equilibrium by backward induction procedure of dynamic programming.

4. Equilibrium execution strategy

Theorem 4.1. There exists a Markov perfect equilibrium at which the following properties hold for each large trader $i \in \{1, 2\}$:

1. The execution volume at the Markov perfect equilibrium for the large trader $i \in \{1, 2\}$ at time $t \in \{1, \ldots, T\}$, denoted as q_t^{i*} , becomes an *affine* function of $(\overline{Q}_t^i, \overline{Q}_t^j, \mathcal{I}_{t-1})$:

$$q_t^{i*} = a_t^i + b_t^i \overline{Q}_t^i + c_t^i \overline{Q}_t^j + d_t^i R_t + e_t^i \mathcal{I}_{t-1}.$$
 (19)

2. The value function $V_t^i(\pi^1, \pi^2)[\mathbf{s}_t]$ at time $t \in \{1, \ldots, T, T+1\}$ for each large trader $i \in \{1, 2\}$ is represented as a functional form:

$$V_t^i(\pi_t^1, \pi_t^2)[\boldsymbol{s}_t] = -\exp\left\{-\gamma \left[W_t^i - P_t^\top \overline{Q}_t^i + G_t^{1i} \left(\overline{Q}_t^i\right)^2 + G_t^{2i} \overline{Q}_t^i + H_t^{1i} \overline{Q}_t R_t + H_t^{2i} R_t^2 + H_t^{3i} R_t + I_t^{1i} \overline{Q}_t^i \overline{Q}_t^j + I_t^{2i} \overline{Q}_t^j R_t + I_T^{3i} \left(\overline{Q}_t^j\right)^2 + I_t^{4i} \overline{Q}_t^j + J_t^{1i} \overline{Q}_t^i \mathcal{I}_{t-1} + J_t^{2i} R_t \mathcal{I}_{t-1} + J_t^{4i} \mathcal{I}_{t-1}^2 + J_t^{5i} \mathcal{I}_{t-1} + Z_t^i\right]\right\}.$$
(20)

The dynamics of $a_t^i, b_t^i, c_t^i, d_t^i, e_t^i; G_t^{1i}, G_t^{2i}, H_t^{1i}, H_t^{2i}, H_t^{1i}, I_t^{2i}, I_t^{3i}, I_t^{4i}, J_t^{1i}, J_t^{2i}, J_t^{3i}, J_t^{4i}, J_t^{5i}, Z_t^i$ for $t \in \{1, \ldots, T, T+1\}$ are deterministic functions of time t which are dependent on the problem parameters, and can be computed backwardly in time t from maturity T.

参考文献

 Lehalle, C. A., & Neuman, E. (2019). Incorporating signals into optimal trading. *Finance and Stochastics*, 23(2), 275–311.