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1. Introduction

Data envelopment analysis (DEA) is a math-
ematical programming approach for evaluat-
ing relative efficiency for decision-making units
(DMUs). The DEA approach can also provide
the benchmarking information for each DMU by
deriving its projection point. Recently, the con-
cept of similarity of the projection point has
been incorporated into the studies on the least-
distance DEA. The least-distance DEA models
aims to find the closest target for the evaluated
DMU. Methodologically, several least-distance
DEA models have been proposed that reverse the
optimization of the conventional DEA model.

Denote by “maximum efficiency measure” the
If there

exists a maximum efficiency measure that satis-

optimal value solved by such models.

fies the units invariance and monotonicity and its
corresponding projection point coincides with the
closest target for all DMUs, then the maximum
efficiency measure is suitable from both the prac-
tical and axiomatic viewpoints. However, the
axiomatic approach to least-distance inefficiency
measures shows the impossibility of monotonicity
(see Ando et al. (2012) for the details). To ensure
monotonicity, Aparicio & Pastor (2014) incorpo-
rated an extended efficient facet approach into
the least-distance DEA. Because the extended ef-
ficient facet approach relies on the mixed-integer
linear programming (MILP), it is unsuitable for
the DEA models that have nonlinear objective
functions. To solve this issue, This study pro-
poses a class of nonlinear DEA models, includ-
ing variants of the Russell graph measure (RM),
BRWZ measure, slack-based measure (SBM),

and geometric distance function (GDF).
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2. Issue of monotonicity

Because the nonlinearity of their objective
functions appears only on an output side, we ex-
amine all the maximum efficiency measures of
the class in the output-orientation. The output-
oriented objective function of RM is

§"(8) = i(zl - 5T), (1)

r=1

which is equivalent to the output-oriented objec-
tive function of the BRWZ measure. The output-
oriented objective function of SBM is

1

S

9°(0) = e (2)
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The output-oriented objective function of GDF

1S

§(0) = (Hlj&)s. @

r=1

The following counterexample shows that the
output-oriented maximum RM, BRWZ measure,
SBM, and GDF do not satisfy the weak mono-
tonicity.

7% 1: A counterexample

DMU =z; wy1 w2 wy3 status
A 1 10 6 80 EfL.
B 1 8 12 12 Eff.
C 1 8 6 8 [Ineff
D 1 10 6 8 Ineff.

3. Generalized output-oriented maxi-
mum efficiency measure

Theorem 3.1 shows the common properties
among the functions (1), (2), and (3):



Theorem 3.1. All the g%, ¢%, and ¢© are de-
creasing, continuous, and quasiconver on R? .

Let g be a decreasing, continuous, and quasi-
convex function on R?%. Consider the following
output-oriented DEA model:

max g(9) (4)
s.t. (z,y + N(y)d) € 0¥ (P) (5)
6 >0, (6)

where 0% (P) is the weakly efficient frontier
and P represents the conventional production
possibility set. Let f(x,y) be the optimal
value of model (4)-(6) for (x,y) € P N
((R7\{0}) xRS ). Therefore, f is an effi-
ciency measure over PN ((R7\ {0}) x RS ) if
g:RyL —(0,1].

Theorems 3.2 and 3.3 show that efficiency mea-
sure f can be computed by solving s maximiza-
tion problems, and it satisfies the weak mono-
tonicity.

Theorem 3.2. For any (x,y) € P N
((RT\{O}) XR‘?H) and for any r = 1,...,s,
let

5 = max { 3] (@,y + oyre,) € P}, (T)

h

where e, is the T unit vector of R%. Therefore,

(z,y + d'yre,) € 0V (P) (8)
and

f(z,y) = max{g(die1),...,g(d5es)}.  (9)

Theorem 3.3. The

is a weakly monotonic function over PN
(R7\ {0)) x B,).

4. Properties of the projection point

efficiency measure f

It can be proved that the objective functions
g%, g%, and ¢© have the same property as the L;
norm property [[de1[1 = [|dezlly = -+ = [|des]s
for any 0 € R, where ||z]1 = Y_._; |2 for any
z € R, That is, for any 6 € R, g%(0e1) = --- =
9" (bes); g5(der) = -+ = ¢%(bes); g%(der) =
o= g% (Sey).

The commensurable Holder output distance
function D(x,y) is

min { i |07 |

r=1

(x,y + N(y)d) € 0"(P)

(10)
An input-output vector (z,y + N(y)d ) is called
the closest target from (x,y) to 9V(P) if § sat-
isfies (x,y + N(y)d ) € 9¥(P) and D(z,y) =
e

It can be proved that the efficiency mea-
sure f is a decreasing function of the least dis-
tance D(x,y). Furthermore, for any decreas-
ing, continuous, and convex function g satisfying
g(dey) =--- =g(dey),¥d € Ry, the computation
of D(x,y) provides the (i) efficiency score and
(ii) projection point which is also a closest tar-
get. The computation of D(«,y) is reduced into

solving the following s LP problems:
(11)
(12)

max )

n
s.t. Z)\ja:j +d =z
j=1

> Nyj—dt =y +dye,  (13)
j=1

d>0,d" >0, A>0. (14)

Denote the optimal value of (11)—(14) by &} for
all » = 1,...,s. From Corollary 3 of Briec
(1999), we obtain D(x,y) = min{d},...,0:}.
The output-oriented maximum RM, BRWZ mea-
sure, SBM, and GDF are then computed by:

1 D
Max. RM (Max. BRWZ) — L (s— - 2@Y)
s 1+ D(z,y)
1
Max. SBM = —SG@a)’
1 + §7y
Max. GDF 1 )
X. — -
) 1+ D(@y))
respectively.
References

[1] Aparicio, J., & Pastor, J. T. (2014). Clos-
est targets and strong monotonicity on the

strongly efficient frontier in dea. Omega, 44,
51-57.

).



