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1. Introduction

Data envelopment analysis (DEA) is a math-

ematical programming approach for evaluat-

ing relative efficiency for decision-making units

(DMUs). The DEA approach can also provide

the benchmarking information for each DMU by

deriving its projection point. Recently, the con-

cept of similarity of the projection point has

been incorporated into the studies on the least-

distance DEA. The least-distance DEA models

aims to find the closest target for the evaluated

DMU. Methodologically, several least-distance

DEA models have been proposed that reverse the

optimization of the conventional DEA model.

Denote by“maximum efficiency measure”the

optimal value solved by such models. If there

exists a maximum efficiency measure that satis-

fies the units invariance and monotonicity and its

corresponding projection point coincides with the

closest target for all DMUs, then the maximum

efficiency measure is suitable from both the prac-

tical and axiomatic viewpoints. However, the

axiomatic approach to least-distance inefficiency

measures shows the impossibility of monotonicity

(see Ando et al. (2012) for the details). To ensure

monotonicity, Aparicio & Pastor (2014) incorpo-

rated an extended efficient facet approach into

the least-distance DEA. Because the extended ef-

ficient facet approach relies on the mixed-integer

linear programming (MILP), it is unsuitable for

the DEA models that have nonlinear objective

functions. To solve this issue, This study pro-

poses a class of nonlinear DEA models, includ-

ing variants of the Russell graph measure (RM),

BRWZ measure, slack-based measure (SBM),

and geometric distance function (GDF).

2. Issue of monotonicity

Because the nonlinearity of their objective

functions appears only on an output side, we ex-

amine all the maximum efficiency measures of

the class in the output-orientation. The output-

oriented objective function of RM is

gR(δ) :=
1

s

(
s∑

r=1

1

1 + δr

)
, (1)

which is equivalent to the output-oriented objec-

tive function of the BRWZ measure. The output-

oriented objective function of SBM is

gS(δ) :=
1

1 + 1
s

∑s
r=1 δr

. (2)

The output-oriented objective function of GDF

is

gG(δ) :=

(
s∏

r=1

1

1 + δr

) 1
s

. (3)

The following counterexample shows that the

output-oriented maximum RM, BRWZ measure,

SBM, and GDF do not satisfy the weak mono-

tonicity.

表 1: A counterexample

DMU x1 y1 y2 y3 status

A 1 10 6 80 Eff.

B 1 8 12 12 Eff.

C 1 8 6 8 Ineff.

D 1 10 6 8 Ineff.

3. Generalized output-oriented maxi-

mum efficiency measure

Theorem 3.1 shows the common properties

among the functions (1), (2), and (3):

2-D-1 日本オペレーションズ・リサーチ学会
2022年 春季研究発表会



Theorem 3.1. All the gR, gS, and gG are de-

creasing, continuous, and quasiconvex on Rs
+.

Let g be a decreasing, continuous, and quasi-

convex function on Rs
+. Consider the following

output-oriented DEA model:

max g(δ) (4)

s.t. (x,y +N(y)δ) ∈ ∂w (P ) (5)

δ ≥ 0, (6)

where ∂w (P ) is the weakly efficient frontier

and P represents the conventional production

possibility set. Let f(x,y) be the optimal

value of model (4)–(6) for (x,y) ∈ P ∩((
Rm
+ \ {0}

)
× Rs

++

)
. Therefore, f is an effi-

ciency measure over P ∩
((
Rm
+ \ {0}

)
× Rs

++

)
if

g : Rs
+ → (0, 1].

Theorems 3.2 and 3.3 show that efficiency mea-

sure f can be computed by solving s maximiza-

tion problems, and it satisfies the weak mono-

tonicity.

Theorem 3.2. For any (x,y) ∈ P ∩((
Rm
+ \ {0}

)
× Rs

++

)
and for any r = 1, . . . , s,

let

δ∗r := max { δ | (x,y + δyrer) ∈ P } , (7)

where er is the rth unit vector of Rs. Therefore,

(x,y + δ∗ryrer) ∈ ∂w (P ) (8)

and

f(x,y) = max { g(δ∗1e1), . . . , g(δ∗ses)} . (9)

Theorem 3.3. The efficiency measure f

is a weakly monotonic function over P∩((
Rm
+ \ {0}

)
× Rs

++

)
.

4. Properties of the projection point

It can be proved that the objective functions

gR, gS , and gG have the same property as the L1

norm property ∥δe1∥1 = ∥δe2∥1 = · · · = ∥δes∥1
for any δ ∈ R, where ∥z∥1 =

∑s
r=1 |zr| for any

z ∈ Rs. That is, for any δ ∈ R+, g
R(δe1) = · · · =

gR(δes); gS(δe1) = · · · = gS(δes); gG(δe1) =

· · · = gG(δes).

The commensurable Hölder output distance

function D(x,y) is

min

{
s∑

r=1

|δr|

∣∣∣∣∣ (x,y +N(y)δ) ∈ ∂w(P )

}
.

(10)

An input-output vector (x,y+N(y)δ”) is called

the closest target from (x,y) to ∂w(P ) if δ” sat-

isfies (x,y + N(y)δ”) ∈ ∂w(P ) and D(x,y) =∑s
r=1 δ

”
r .

It can be proved that the efficiency mea-

sure f is a decreasing function of the least dis-

tance D(x,y). Furthermore, for any decreas-

ing, continuous, and convex function g satisfying

g(δe1) = · · · = g(δes), ∀δ ∈ R+, the computation

of D(x,y) provides the (i) efficiency score and

(ii) projection point which is also a closest tar-

get. The computation of D(x,y) is reduced into

solving the following s LP problems:

max δ (11)

s.t.

n∑
j=1

λjxj + d− = x (12)

n∑
j=1

λjyj − d+ = y + δyrer (13)

d− ≥ 0, d+ ≥ 0, λ ≥ 0. (14)

Denote the optimal value of (11)–(14) by δ∗r for

all r = 1, . . . , s. From Corollary 3 of Briec

(1999), we obtain D(x,y) = min{ δ∗1 , . . . , δ∗s}.
The output-oriented maximum RM, BRWZ mea-

sure, SBM, and GDF are then computed by:

Max. RM (Max. BRWZ) =
1

s

(
s− D(x,y)

1 +D(x,y)

)
,

Max. SBM =
1

1 + D(x,y)
s

,

Max. GDF =

(
1

1 +D(x,y)

) 1
s

,

respectively.
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