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1. Introduction

We consider the following problem:

min
x∈M

f(x)

s.t. h(x) = 0, and g(x) ≥ 0,
(RCOP)

whereM is a finite dimensional Riemannian man-

ifold, f : M → R, h : M → Rl, and g : M → Rm

are C2 functions on M. This problem is called

Riemannian Constrained Optimization Problem

(RCOP). Such problems feature naturally in ap-

plications. For example, the matrix factorization

with nonnegative constrains on fixed-rank mani-

fold; k-means via low-rank SDP as a constrained

optimization problem on the Stiefel manifold.

Contributions: In this manuscript, we ex-

tend the classical primal-dual interior point al-

gorithms from the Euclidean setting to Rieman-

nian setting, named Riemannian Interior Point

(RIP) methods for (RCOP). Under some mild

assumptions, we establish the locally superlin-

ear/quadratic convergence for RIP, and the su-

perlinear convergence for quasi-Newton type of

RIP. Those are the generalizations of classical

local convergent theory of interior point meth-

ods for nonlinear programming, proposed by El-

Bakry et al. [1], and Yamashita and Yabe [2].

2. Interpretation: KKT vector field

The Lagrangian of (RCOP) is L(x, y, z) =

f(x) − yTh(x) − zT g(x), where y ∈ Rl, z ∈ Rm.

L(·, y, z) is a scalar function on M, and its Rie-

mannian gradient gradx L(x, y, z) is equal to

grad f(x)−
l∑

i=1

yi gradhi(x)−
m∑
i=1

zi grad gi(x),

where grad f(x), {gradhi(x)}, {grad gi(x)} are

Riemannian gradients for components of f, h, g,

respectively. The active set A(x) = {i : gi(x) =
0, i = 1, . . . ,m} consists of indices of the active

constraints at x ∈ M. The Riemannian version

of KKT conditions [3] for (RCOP) are given by

gradx L(x, y, z) = 0,

h(x) = 0,

g(x) ≥ 0,

Zg(x) = 0,

z ≥ 0.

(1)

With a slack variable s := g(x), the above KKT

conditions can be written as

F (w) :=


gradx L(x, y, z)
h(x)

g(x)− s

ZSe

 = 0, (2)

and (s, z) ≥ 0, where w := (x, y, s, z) ∈ M :=

M×Rl×Rm×Rm. Remark that we get a vector

field on Riemannian product manifold M , i.e.,

F : M → TM ≡ TM× TRl × TRm × TRm,

where TM :=
⊔

w∈M TwM denotes the tangent

bundle of M with the tangent space TwM ≡
TxM × Rl × Rm × Rm under the identifications

TvE ≡ E for any vector space E and any v ∈ E .
Definition 2.1 The vector field F on M defined

in (2) is called KKT vector field of (RCOP).

3. Motivations: generalized Newton

LetM be a general Riemannian manifold. The

generalized Newton method has been studied un-

der the Riemannian setting and aims to find a

point p ∈ M such that F (p) = 0. Let ∇ be a Rie-

mannian connection onM. The covariant deriva-

tive of vector filed F assigns each point p ∈ M a

linear operator ∇F (p) : TpM → TpM. Then the

Riemannian Newton iterate is stated as follows.
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(Step 1) Compute the direction v ∈ TpM as a

solution of linear system ∇F (p)v = −F (p).

(Step 2) Compute p+ := Rp(v), where R denotes

a retraction on M (a tool for moving on M).

We have known that if p∗ is a solution and

∇F (p∗) is nonsingular then under some mild

conditions of covariant derivative ∇F , the local

superlinear/quadratic convergence holds. Thus,

the nonsingularity of covariant derivative at solu-

tion is essential if Newton method is to be applied

for (2). The standard Riemannian assumptions

for (RCOP) are as follows:

(A1) Existence. There exists w∗ satisfying (1).

(A2) Smoothness. f, g, h are C2; Hessian of

their components are Lipschitz continuous at x∗.

(A3) Regularity. {gradhi(x∗)}∪{grad gi(x∗) :
for i ∈ A(x∗)} is linearly independent in Tx∗M.

(A4) Strict Complementarity. (z∗)i > 0 if

gi(x
∗) = 0 for all i = 1, · · · ,m.

(A5) Second Order Sufficiency. For all

nonzero ξ ∈ Tx∗M such that ⟨ξ, gradhi(x∗)⟩ = 0

for all i and ⟨ξ, grad gi(x∗)⟩ = 0 for i ∈ A(x∗), one

has ⟨Hessx L(w∗)ξ, ξ⟩ > 0, where Hessx L(w) de-
notes the Hessian of the scalar function L(·, y, z).
The following result motivates the usage of Rie-

mannian Newton method for solving (2).

Proposition 3.1 If the assumptions (A1)-(A5)

hold then ∇F (w∗) is nonsingular.

3.1. Riemannian Interior Point (RIP)

As observed in usual Euclidean setting, to keep

the iterates sufficiently far from the boundary, we

introduce the perturbed complementary equation

for some positive number µ > 0, i.e.,

Fµ(w) := F (w)−µê(w), and ê(w) := (0x, 0, 0, e),

with zero element 0x in TxM and all ones e ∈ Rm.

Now, we propose the prototype algorithms for

RIP, or called Newton RIP, and its quasi-Newton

version as follows.

(Step 0) Let R be a retraction on M. Let w0 ∈
M with (s0, z0) > 0, for k = 0, 1, 2, . . ., do:

(Step 1) Choose the barrier parameter µk > 0.

(Step 2) Solve the following linear system,

∇F (wk)∆wk = −Fµk
(wk).

(Step 3) Choose γk with 0 < γ̂ ≤ γk ≤ 1 for a

constant γ̂ and compute the step size

αk = −γk/min
(
(Sk)

−1∆s, (Zk)
−1∆z,−γk

)
.

(Step 4) Update: wk+1 = R̄wk
(αk∆wk), where

R̄ is the retraction on M that constructed by R.

Moreover, if the linear operator Bk on Twk
M

is constructed as the approximation of ∇F (wk)

then the quasi-Newton RIP is given if in (Step 2)

we solve

Bk∆wk = −Fµk
(wk).

About convergent results, we prove the locally

superlinear/quadratic convergence for RIP, and

the local and superlinear convergence for quasi-

Newton RIP. Due to limited space, their state-

ments are omitted here.

4. Conclusion

In this article, we proposed a Riemannian ver-

sion of classical interior point methods and es-

tablish some local convergent theories. To our

knowledge, this article is the first study to ap-

ply the interior point method to the constrained

optimization on manifolds.
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