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1. Introduction

We consider the following problem:
min

min  f(z)

(RCOP)
st.  h(z) =0, and g(z) > 0,

where M is a finite dimensional Riemannian man-
ifold, f: M = R,h: M — R!, and g : M — R™
are C? functions on M. This problem is called
Riemannian Constrained Optimization Problem
(RCOP). Such problems feature naturally in ap-
plications. For example, the matrix factorization
with nonnegative constrains on fixed-rank mani-
fold; k-means via low-rank SDP as a constrained
optimization problem on the Stiefel manifold.
Contributions: In this manuscript, we ex-
tend the classical primal-dual interior point al-
gorithms from the Euclidean setting to Rieman-
nian setting, named Riemannian Interior Point

(RIP) methods for (RCOP).
assumptions, we establish the locally superlin-

Under some mild

ear/quadratic convergence for RIP, and the su-
perlinear convergence for quasi-Newton type of
RIP. Those are the generalizations of classical
local convergent theory of interior point meth-
ods for nonlinear programming, proposed by El-
Bakry et al. [1], and Yamashita and Yabe [2].
2. Interpretation: KKT vector field
The Lagrangian of (RCOP) is L(z,y,z) =
f(x) —yTh(z) — 2T g(z), where y € R}, 2z € R™,
L(-,y,z) is a scalar function on M, and its Rie-
mannian gradient grad, L(z,y, z) is equal to

Z yi grad h;( Z z; grad g;(z

where grad f(z), {gradh;(z)}, {gradg;(z)} are
Riemannian gradients for components of f,h, g,

grad f(x
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respectively. The active set A(z) = {i : gi(x) =
0,2 =1,...
constraints at z € M. The Riemannian version
of KKT conditions [3] for (RCOP) are given by

grad, L(x,y,z) =0,

,m} consists of indices of the active

With a slack variable s := g(z), the above KKT
conditions can be written as

grad, L(z,y, z)
F(w) := =0, (2

and (s,z) > 0, where w := (z,y,s,2) € M =
M x R x R™ x R™. Remark that we get a vector
field on Riemannian product manifold .Z, i.e.,

F:tl »T# =TMx TR x TR™ x TR™,

where T.# := | |,c 4 Tw-# denotes the tangent
bundle of .# with the tangent space Ty, .# =
T,M x R! x R™ x R™ under the identifications
T,& = & for any vector space £ and any v € £.
Definition 2.1 The vector field F' on 4 defined
in (2) is called KKT vector field of (RCOP).

3. Motivations: generalized Newton
Let M be a general Riemannian manifold. The
generalized Newton method has been studied un-
der the Riemannian setting and aims to find a
point p € M such that F(p) = 0. Let V be a Rie-
mannian connection on M. The covariant deriva-
tive of vector filed F' assigns each point p € M a
linear operator VF(p) : T, M — T, M. Then the
Riemannian Newton iterate is stated as follows.
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(Step 1) Compute the direction v € T,M as a
solution of linear system VF(p)v = —F(p).
(Step 2) Compute py := R,(v), where R denotes
a retraction on M (a tool for moving on M).

We have known that if p* is a solution and
VF(p*) is nonsingular then under some mild
conditions of covariant derivative VF', the local
superlinear /quadratic convergence holds. Thus,
the nonsingularity of covariant derivative at solu-
tion is essential if Newton method is to be applied
for (2). The standard Riemannian assumptions
for (RCOP) are as follows:

(A1) Existence. There exists w* satisfying (1).
(A2) Smoothness. f,g,h are C?; Hessian of
their components are Lipschitz continuous at x*.
(A3) Regularity. {grad h;(z*)}U{grad g;(z*) :
for i € A(z*)} is linearly independent in T,«M.
(A4) Strict Complementarity. (z*); > 0 if
gi(z*)=0foralli=1,--- ,m.

(A5) Second Order Sufficiency. For all
nonzero & € T«M such that (¢, grad h;(z*)) =0
for all i and (¢, grad g;(z*)) = 0 for i € A(x*), one
has (Hessy L(w*)E, &) > 0, where Hess, £(w) de-
notes the Hessian of the scalar function L(-,y, ).

The following result motivates the usage of Rie-
mannian Newton method for solving (2).

Proposition 3.1 If the assumptions (A1)-(A5)
hold then VF(w*) is nonsingular.

3.1.

As observed in usual Euclidean setting, to keep

Riemannian Interior Point (RIP)

the iterates sufficiently far from the boundary, we
introduce the perturbed complementary equation
for some positive number p > 0, i.e.,

Fu(w) := F(w)—pé(w), and é(w) := (04,0,0,¢),

with zero element 0, in T,,M and all ones e € R™.
Now, we propose the prototype algorithms for
RIP, or called Newton RIP, and its quasi-Newton

version as follows.

(Step 0) Let R be a retraction on M. Let wy €
A with (sg,z9) >0, for k=0,1,2,..., do:
(Step 1) Choose the barrier parameter p; > 0.

(Step 2) Solve the following linear system,
VF(wk)Awk = _FMk (wk)

(Step 3) Choose v, with 0 < 4 < 4% < 1 for a
constant 4 and compute the step size

o = —7/ min <(Sk)_l As, (Z) ' Az, —’Yk) :

(Step 4) Update: wgi1 = Ry, (axAwy), where
R is the retraction on .# that constructed by R.
Moreover, if the linear operator By on T, 4
is constructed as the approximation of VF (wy)
then the quasi-Newton RIP is given if in (Step 2)
we solve
BiAwy, = —F), (wg).

About convergent results, we prove the locally
superlinear/quadratic convergence for RIP, and
the local and superlinear convergence for quasi-
Newton RIP. Due to limited space, their state-
ments are omitted here.

4. Conclusion

In this article, we proposed a Riemannian ver-
sion of classical interior point methods and es-
tablish some local convergent theories. To our
knowledge, this article is the first study to ap-
ply the interior point method to the constrained

optimization on manifolds.
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