
A Study on a Pyramid Structure in Social Networks

Kyoto University *LYU Wenruo
01991974 Kyoto University ZHAO Liang

1. Introduction
Since the late 1990s, driven by the quick emergence

of large and reliable network maps [1], quantitative
studies on social networks have emerged and rapidly
attracted the interest of an increasing number of re-
searchers from many fields. Many models and tools
have been developed and applied to study social phe-
nomena. Watts et al. [2] proposed a famous WS model
to explain the small-world phenomenon, i.e., the av-
erage distance is proportional to the logarithm of the
number of nodes. Notice that this definition is with
respect to a type of networks, not for a given network.

On the other hand, Barabási et al. [3] declaired that
the distribution P (k) of degree k of social networks fol-
lows a power law, i.e., P (k) ∼ k−γ for some constant
γ. This is often called the scale-free phenomenon,
and [3] came up with another famous BA model to
explain it.
This study, inspired by the social phenomenon with

the same name, proposes a simple pyramid structure
and uses it to provide a unified and more general view
on the aforementioned phenomena of social networks.
It is first shown that the size distribution of height-
1 pyramids can be used to replace the degree dis-
tribution. As an extension, the size distribution of
height-2 pyramids shows much different phenomena
among networks even if they are with similar scale-
free phenomenon. This implies pyramid structure is
a more feature-rich framework for studying networks.
Furthermore, theoretical and empirical studies on the
size distributions of pyramids show that BA and WS
models are not sufficient to explain social networks by
the size distribution of pyramids and the proportion
of large pyramids, where a pyramid is said large if its
size is greater than the half of the network. It also pro-
vides an evidence to the hypothesis on the existence
of large pyramids in social networks given by Zhao
and Peng 2020 [4] in studying an appropriate size of
a parliament. The third contribution of this study
is a novel small-world definition for a given network
by the existence of large pyramid with high clustering
coefficient. Empirical studies support the proposed
model.

2. Model
Let G = (V,E) denote a graph with a set V of

n nodes and a set E of m edges. Without loss of
generality, we assume that G is simple, connected, and
undirected. Let deg(v) denote the degree of a node v,
and distG(u, v) denote the distance, i.e., the minimum

number of edges needed to reach a node v from a node
u in graph G. Let ΓG(v; i) = {u ∈ V | distG(v, u) = i}
denote the set of nodes of distance i from a node v ∈ V
in G. Notice that ΓG(v; 0) = {v}. Let | · | denote the
number of elements in a set, i.e., the size of a set.
The proposed model of pyramid structure is defined
as follows (see Figure 1 for an illustration).

Definition 1 A rooted tree T = (r, VT , ET ) with a
root r, a set VT of nodes and a set ET of edges is
called a (ρ, ε)-pyramid for some constants ρ and ε iff
∀i = 0, 1, . . . , h− 1,

1 < ρ− ε ≤ |ΓT (r; i+ 1)|
|ΓT (r; i)|

≤ ρ+ ε, (1)

where h = maxv∈VT
{distT (r, v)} denotes the height of

T , and nT denotes the size of T .

For any node r, a maximal pyramid with root r can
be found by a Breadth-First Search (BFS) in the net-
work and greedily include nodes of distance 0, 1, · · ·,
from the root, as far as the (partial) BFS tree is a
pyramid. This can be done in linear time. Let us
denote it by TBFS(r).

Figure 1: An illustration of a pyramid of height 3 and
size 16 with ρ = 2.05 and ε = 0.45.

3. Empirical Studies
Empirical studies are conducted for 163 networks,

155 of them were downloaded from network repository
(https://networkrepository.com/index.php) and
the rest networks were generated based on BA model
and WS model.
Since deg(v) is one less than the size of the max-

imal height-1 pyramid with root v if deg(v) ≥ 2,
degree distribution can be replaced by the size dis-
tribution of the maximal height-1 pyramids. As an
extension, the size distribution of maximal height-2
pyramids is considered. Comparing two social net-
works extracted from Facebook, fb-pages-company
(n = 14, 114, m = 52, 126) and socfb-Harvard1 (n =
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15, 086, m = 824, 595), while both of their size distri-
bution of height-1 pyramids show a power law with
γ = 2.30 and 1.39 respectively, the size distribution
of height-2 pyramids for fb-pages-company shows a
power law (γ = 1.32), but socfb-Harvard1 does not.
See Figure 2. It indicates that degree distribution
is too simple to study social networks, and pyramid
structure is more feature-rich.

(a) fb-pages-company, h =
1, γ = 2.30

(b) socfb-Harvard1, h = 1,
γ = 1.39

(c) fb-pages-company, h =
2, γ = 1.32

(d) socfb-Harvard1, h = 2,
not power law

Figure 2: Size distributions of height-1 and 2 pyramids
in two social networks.

This study also uses pyramid structure to study
the average distance of networks. Noting that for
a pyramid T , h = Θ(log nT ). Hence ∀u, v ∈
VT ,distG(u, v) = O(log n). Therefore, if nT is large
enough (> n/2), the small-world phenomenon can be
expected.
On the other hand, the sizes of TBFS in social net-

works are either large or small (≈ 0) while in road
networks, pyramids are usually small (< 0.5n). How-
ever, pyramids in BA networks and WS networks are
all large, no small, which show different patterns from
social networks. This difference indicates that BA and
WS models are not enough to model real social net-
works.
Finally, we observed the ratio PLarge of large TBFS

in social networks is between 0.5 and 1 with a 90%
confidence interval with an average 0.9374. In con-
trast, in power networks, 0 ≤ PLarge ≤ 0.3, and in
road networks, PLarge ≈ 0. See Table 1. This ob-
servation indicates that influence a majority is much
easier than expected in a social network.
Based on the above observations, we consider a

large pyramid acts as a core structure in a small-world
network. Given a pyramid T = (VT , ET ), we decom-
pose G into two subgraphs G∗ and G′ induced by VT

and V \ VT , respectively. Empirical study results on
3 social networks (see Table 2) show that the differ-
ence between ACC(G∗) and ACC(G) is not signifi-

Table 1: Comparison of PLarge for various networks.

networks (# samples) PLarge

highly
possible

social (127)
0.50 ∼ 1.00 (90%

confidence interval),
average ≈ 0.9374

ecology (2), economic (3),
ER (4), BA (4), WS(4)

≈ 1.00

infrastructure (2) 0.70 ∼ 0.80
animal social (1) = 1.00

lowly
possible

animal social (2) ≈ 0.25
power (8) 0 ∼ 0.30

brain (1), road (2),
cheminformatics (3)

≈ 0

cant, where the average clustering coefficient

ACC(G) =

∑
v∈V C(v)

n
, (2)

and local clustering coefficient

C(v) =
|{(u,w) ∈ E | (v, u) ∈ E, (v, w) ∈ E}|

deg(v)× (deg(v)− 1)/2
(3)

if deg(v) ≥ 2, otherwise C(v) is defined as 0. This
observation reveals that large pyramid reflects core
structural features of the original network.

Table 2: Comparison of G and G∗ for three social
networks.

name n ACC(G) nT ACC(G∗)
fb-pages-tvshow 3,892 0.3737 2,456 0.4084

socfb-Haverford76 1,446 0.3230 1,067 0.3088
soc-wiki-Vote 889 0.1528 620 0.2109

Based on the above results, a definition of general-
ized small-world network is given as follows.

Definition 2 G = (V,E) is said a small-world net-
work if there exists a large pyramid T = (VT , ET ) in
G, and ACC(G∗) > c, where G∗ is the subgraph of G
induced by VT and c > 0 is a constant.

We consider this definition is useful in studying so-
cial networks.
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