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1. Introduction

We propose an exact solution method for the
multi-Weber problem with Manhattan (l1) dis-
tance, a problem we shall refer to as MWPL1.
MWPL1 requires the locating of several facilities
in order to minimise the total travelling distance
from the given demand points to their nearest
facility. Distances are measured using the Man-
hattan metric which, taking into account the grid
structure prevalent in many cities’ transport in-
frastructure (of which Kyoto is a prime exam-
ple), is most representative when considering ur-
ban applications of facility location as well as
those arising from multi-dimensional data sets
with heterogeneous dimensions.

It is known that the single facility Weber prob-
lem with Manhattan distance is easily solved be-
cause its objective function is a piecewise lin-
ear function. For MWPL1, a few heuristic al-
gorithms have already been proposed. However,
effective algorithms to obtain the exact solution
of the MWPL1 have not been studied[1].

The algorithms we propose are based upon the
BTST (Big Triangle Small Triangle) method [2],
designed to obtain the exact solution of prob-
lems whose objective function is not convex. The
BTST method has been applied to many contin-
uous location problems for which the exact solu-
tions are considered difficult to obtain.

The objective function of the MWPL1 is not
convex and there are many local minima. Resort-
ing to the existing heuristic methods risks obtain-
ing not the exact solution but one of these local
minima. A naive solution method is to enumer-
ate all the candidate points and to evaluate the
objective function at each in order to find the so-
lution. This, not surprisingly, is time-consuming.
Instead, we construct a BTST algorithm for the
MWPL1 which finds the exact solution in prac-
tical computational time. We compare the algo-
rithm with the naive enumeration method and
show the effectiveness of our algorithm.

2. Exact solution of the Weber prob-
lem with Manhattan distance
within a triangle

Before we describe the MWPL1, we introduce
the exact solution of the Weber problem with
Manhattan distance confined to a triangle.

We use the exact solution to estimate a lower
bound of the objective function in BTST. It is
well known that the exact solution of the We-
ber problem with Manhattan distance is easily
obtained since the objective function is a piece-
wise linear function. We can divide the objective
function into two terms depending on only the
x-coordinates and y-coordinates respectively and
find the optimal x- and y-coordinate by minimis-
ing each term independently.

However, when confined to an area not con-
taining the convex hull of the demand points in
its entirety, this optimum may not be achievable.
In this case we show that the minimum is at-
tained at a limited number of candidate points.
Evaluating the objective function for each candi-
date point, we pick up the minimum as the exact
solution.

Now we describe the problem. We have n de-
mand points Pi(ai, bi) whose weights are wi(>
0), i = 1, ..., n. We want to obtain the exact solu-
tion P (x, y) in a convex feasible region FR which
minimises the objective function

n∑
i=1

widM (Pi, X), (1)

where dM (Pi, X) = |x− ai|+ |y − bi|.
We sort the x- and y-coordinates of the demand

points as a(1) < . . . < a(n) and b(1) < . . . <
b(n) respectively. The optimal solution lies within
the rectangle [a(1), a(n)] × [b(1), b(n)] so we take
this as FR. We consider n2 ‘tiles’ [a(i), a(i+1)] ×
[b(j), b(j+1)], i, j = 1, ..., n− 1, and call the points
[a(i), b(j)], i, j = 1, ..., n− 1, grid points.
It is obvious that the objective function (1) is

a linear function within each tile. From this, we
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obtain the following lemma concerning the op-
timal point within a triangle T . We obtain the
similar lemma for the case of a rectangle.

Lemma 1: The exact solution which minimises
the objective function (1) in a triangle T ⊂ FR is
a vertex of T , a grid point in T , or an intersection
point of an edge of T and a tile edge.

3. BTST algorithm for MWPL1

The objective function of MWPL1 is

min

n∑
i=1

wi min
k=1,...,p

dM (Xk, Pi) (2)

s.t. Xk ∈ FR, k = 1, ..., p (3)

where Xk, k = 1, ..., p are the locations of the
facilities to be optimised. The BTST algorithm
of MWPL1 is described as follows:

1) Triangulate the convex hull of the demand
points using the Delaunay triangulation.

2) Make a list of the sets of p triangles.

3) Calculate an upper bound UB for (2).

4) Calculate a lower bound LBs for (2) for each
set s of p triangles in the list.

5) If LBs > UB/(1 + ϵ), remove set s from the
list.

6) Branch and bound

A) Choose the set with the lowest LBs and
divide each constituent triangle into
four similar triangles. Using these new
triangles, form new sets of p triangles
and calculate the LBs for each new set,
updating UB if possible.

B) If LBs > UB/(1 + ϵ), remove set s
from the list.

C) If the list is empty, UB is the optimal
value and the gravity centres of the tri-
angles in the associated set provide the
optimum solution. Otherwise, go to A.

We calculate UB by evaluating (2) at the grav-
ity centres of the p candidate triangles. To cal-
culate LB for a set of p triangles T1, ..., Tp, we
transform the objective function (2) into p + 1
terms as follows:

n∑
i=1

wi min
k=1,...,p

dM (Xk, Pi) (4)

=

p∑
k=1

∑
i∈Ik

widM (Xk, Pi)

+
∑

i∈Ip+1

wi min
k=1,...,p

widM (Xk, Pi) (5)

where I = {1, ..., n}, Ik = {i ∈ I|dM (tk, Pi) <
dM (tk′ , Pi), ∀tk ∈ Tk, tk′ ∈ Tk′ , k

′(̸= k) = 1, ..., p}
(k = 1, ..., p), and Ip+1 = I\(∪p

k=1Ik).
To calculate the LB, we obtain the exact solu-

tion Xk within Tk for the first term of (5) using
Lemma 1 for each k. The second term is evalu-
ated by the following equation:∑

i∈Ip+1

wi min
k=1,...,p

widM (Xk, Pi) (6)

≧
∑

i∈Ip+1

wi min
k=1,...,p

widM (Tk, Pi) (7)

where dM (Tk, Pi) = mintk∈Tk
dM (tk, Pi).

4. Preliminary comparison of BTST
and the naive method

In the BTST method, we triangulate FR into
around 2n triangles. We evaluate the function
value to obtain the UB for every candidate set
of p triangles (of which there are 2nCp) and the
BTST method is effective at finding the solution
because the lower bound of the objective function
is tight. On the other hand, the naive enumer-
ation method needs to evaluate every set of p
candidate grid points (n2Cp solutions). The dif-
ference in complexity is O(np) so, especially for
large p, BTST will solve the problem more effec-
tively than the naive method.
We also introduce the BRSR (Big Rectangle

and Small Rectangle) method in which we use
rectangles instead of triangles as in the BTST
method. We implement the BTST, BRSR, and
the naive methods and compare the CPU time
for various values of n and p.
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