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1. Introduction

We extend the classical globally convergent
primal-dual interior point algorithms [1] from the
Fuclidean setting to the Riemannian one. Our
method, named the Riemannian interior point
method (RIPM), is for solving Riemannian con-
strained optimization problems:

min

min  f(z)

(RCOP)
s.t.  h(x) =0, and g(x) <0,

where M is a finite dimensional Riemannian man-
ifold, f: M — R,h: M — R!, and g : M — R™
are smooth functions. Such problem has wide
applications, e.g., the matrix factorization with

nonnegative constrains on fixed-rank manifold.

2. Formulation of RIPM

KKT Vector Field

The Lagrangian of (RCOP) is L(z,y,2) =
f(x)+y " h(z)+ 2" g(x) with multipliers y, z. Let
grad, L£(z,y,2) be the Riemannian gradient of
L(-,y,z) : M — R, which is equal to

! m
grad f(x) + Y _ yigrad hy(w) + Y _ 2 grad g;(x),
i=1 i=1
where grad f(z), {grad h;(z)}, {gradg;(z)} are
Riemannian gradients of components of f,h,g,
respectively. The Riemannian version of KKT

conditions [2] for (RCOP) are given by
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By s := —g(z), the above is equivalent to

Fw)=0 and (z,8) >0, (2)
where
grad, L(z,y, z)
_ | n@
rwy= | 0 B
ZSe

is called KKT vector field of (RCOP) and w :=
(z,y,8,2) € M =M x R x R™ x R™. Remark
that we get a vector field on Riemannian product
manifold .#, i.e., F: # — T.#/ =TM x TR x
TR™ x TR™, where T'.Z denotes tangent bundle
of # and tangent space Ty, .# = T,M x R! x
R™ x R™.

Covariant Derivative VF(w)

Let M be a general Riemannian manifold with
Levi-Civita connection V. The generalized New-
ton method aims to find the singularity of a vec-
tor field F : M — TM, ie.,
such that F(p) = 0. The covariant derivative of

a point p € M

F assigns each point p € M a linear operator
VF(p):Tp,M — T, M. Then the Newton iterate
is stated as follows.

(Step 1) Solve VF(pg)[&k] = —F(pk) to get New-
ton direction &, € 1), M.

(Step 2) Compute pyy1 := Rp, (§k), where R de-
notes a retraction on M.

If the generalized Newton method is applied to
(3), we must formulate the covariant derivative of
KKT vector field F'. For each x € M, we define
a linear map H, : R - T,M by

H,[v] == St v grad hy(z).
Then, its adjoint H} : T,M — R' is
Hi (€] = [(grad b (2),€),, - (grad (), €),] -



One can define G, and G}, verbatim. For w € .,
the covariant derivative of KK'T vector field F of
(3) is VF(w) : Tyt — Tyt , and VF(w)[Aw]
is given by
Hess, L(w)[Ax] + Hz[Ay] + G[Az]
H:[Azx]
GilAz] + As ’
ZAs+ SAz
(Az,Ay,Az,As) € Ty, and
Hess, L(w) is equal to

where Aw =

l m
Hess f(z) + Z y; Hess h;(x) + Z z; Hess g;(x),
i=1 i=1

with Hess being Riemannian Hessian on M.

Perturbed Newton Equation

As in Euclidean setting, we introduce the per-
turbed KKT Vector Field: F,(w) = F(w) —
pé, €:=(0,0,0,¢e), with barrier parameter p >
0. Here, e € R™ is all-ones. Then it yields the
perturbed Newton equation:

VF(w)Aw = —F(w) + pé.

3. Global Line Search RIPM
For a starting point wg = (zo, Yo, 20, So) with

xo € M, (Z(],So) > 0, let 7 := %77@ =
.

_zg s : B

TF(woll" At a current point w = (z,v, 2, s) and

direction Aw = (Az, Ay, Az, As), the next it-
erate is calculated along a curve on .Z, i.e.,
w(a) == Ry(aAw), for some step length a. By
introducing w(a) = (z(«a), y(a), z(a), s(a)), then
z(a) = Ry(aAz), y(la) = y + aly, z(a) =
z+ alz, s(a) = s+ als. Define two centrality
functions,

(@) :=min(Z(a)S(a)e) — yriz(a) s(a)/m,
(@) == 2(@)Ts(e) = v F(w(@))|,
with constant 0 < «v < 1. For ¢ = I, I, define

L= . fi(t) >0, for all ¢ € (0, .
a arg(%ﬁ]{a fi(t) >0, for a (0,0]}

Define a merit function ¢ : # — R by p(w) :=
|F(w)||*>. Now, we are ready to describe our al-
gorithm.

(Step 0) Choose wy = (xo,Y0,20,80) with
(z0,50) > 0,0 € (0,1), and 8 € (0,1/2]. Set
k=0,%-1 € (1/2,1), and pg = @(w).
(Step 1) If wp < €cyit , Stop.

(Step 2) Choose oy, € (0,1), g = 2 sp/m;
wg, compute direction Awy by

t

o

VF(w)[Aw] = —F(w) + oy ppé.

(Step 3) Step length selection.
(3a) Centrality conditions: Choose 1/2 < v, <

Ye—1; compute a',i = I,II; and let &, =

min(al, o!?).

(3b) Sufficient decreasing: Let o = 6'ay,

where t is the smallest nonnegative integer such

that «j satisfies ©(Ry, (apAwg)) — o(wg) <

ozkﬁ <grad Pk Awk>wk .
(Step 4) Update: wyy1 = Ry, (. Awy).

Convergence

Under some standard assumptions, we prove
the global convergence of RIPM with classical lin-
ear search. Due to limited space, their statements
are omitted here.

4. Conclusion

In this article, we proposed a Riemannian ver-
sion of classical globally convergent primal-dual
interior point algorithms. Through the numerical
experiments, we confirmed its validity on sphere
manifold, Stiefel manifold, fixed-rank manifold

and so on.
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