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1. Introduction

In this paper, we develop a Newton-type it-
erative method with random projections for the
following unconstrained optimization problem:

f(=), (1)

min

TzER™
where f : R” — R is a non-convex twice differen-
tiable function. In our method, at each iteration,
we restrict the function f to a random subspace
and compute the next iterate by choosing a de-
scent direction on this random subspace. When f
is convex, Randomized Subspace Newton (RSN)
is introduced in [1]. At each iteration, it com-

putes the descent direction d?SN and the next
iterate as
AN = =Pl (PV? fan) B )T PV f (),

1
Th+1 = Tk + EdgsN,

where P, € R**™ is a random matrix and L
is some fixed constant. RSN is expected to be
highly computationally efficient, with respect to
the original Newton method since it does not re-
quire computation of the inverse of the full Hes-
sian. If the objective function f is not convex,
the Hessian is not always positive semidefinite
and dESN is not guaranteed to be a descent di-
rection so that we need to use a modified Hes-
sian. Based on the regularized Newton method
(RNM) for the unconstrained non-convex opti-
mization [2, 3], we propose the randomized sub-
space regularized Newton method (RS-RNM):

dy,

Tk+1

—P/ (P2 f (i) B+ mis) ' PoV £ (),
T + trdy,

where 7 is defined to ensure that search direc-
tion di is a descent direction and the step size
tr is chosen so that it satisfies Armijo’s rule.
As with RSN, this algorithm is expected to be
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computationally efficient since we use projections
onto lower-dimensional spaces. In this paper, we
show that RS-RNM has global convergence un-
der appropriate assumptions, more precisely, we
have ||V f(x1)|| < e after at most O(e72) itera-
tions with some probability. We will then prove
that under additional assumptions, we can ob-
tain a linear convergence rate locally. In partic-
ular, the conditions we obtain are, to the best
of our knowledge, the weakest conditions until
now. From the weakest conditions, we can derive
a random-projection version of the PL inequality.
We will then prove that linear convergence is the
best rate we can hope for this method.

2. Randomized subspace regularized
Newton method
Let D be a distribution over random projection
matrices of size s x n. With a Gaussian random
matrix P from D, the regularized sketched Hes-
sian:

My = P.V2f(x1)P) + mpls € RS®S,

where ny, 1= c1Ap+c2||V f(xr)]|” and where Ay, :=
max (0, —Amin(Px V2 f(xk) P, )), is computed. We
then compute the search direction:

dy = —P) M, ' PV f (xx). (2)

The costly part of Newton-based methods, the
inverse computation of a (approximate) Hessian
matrix, is done in the subspace of size s. We note
that dj, defined by (2) is a descent direction for
f at zp, since it turns out that Mj is positive
definite from the definition of Ay, and therefore
PJ M, Lp, is also positive definite.

The backtracking line search with Armijo’s
rule finds the smallest integer [, > 0 such that

Flaw) = floe + B%di) > —aBglde.  (3)

Starting with {; = 0, [;, is increased by [ < [ +1
until the condition (3) holds.



3. Global convergence

The following theorem asserts that when the
Hessian is Lipschitz continuous and the level sets
of f are bounded, then we have that with high
probability, |V f(zz)| < e after at most O(¢~2)
iterations.

Theorem 1 Assume that the level set of f at the
witial point xg is bounded and that the Hessian
s Lipschitz continuous. Then, with probability at
least 1 —2m (exp(—%os) — exp(—s)), we have

_ fx
f(xo) — f > min
mp k=0,1,....,m—

IV F@l,

where p is constant that depends on

some parameters of the function f.

and on

4. Local convergence

In this section, we investigate local convergence
properties of the sequence {x} assuming that it
converges to a strict local minimal z. First we
will show that the sequence converges locally lin-
early to the strict local minima. Then we will
prove that when f is strongly convex, we cannot
aim at local super-linear convergence using ran-
dom subspace. We make the following assump-
tions

Assumption 1 We have that s = o(n)

Assumption 2 We assume that

(i) There exists o > 0 such that

r =rank(V2f(z)) > on

(ii) There exists 0 < p < 3 and C such that in a
neighborhood of T, f(x)—f(Z) > Cllzk—z||”
holds.

Assumption 3 We assumed that
(C +2)%s < n.

The next Theorem proves that under some as-
sumptions, the sequence { f(x)— f(Z)} converge
linearly locally to 0.

Theorem 2 Assume that Assumptions 1, 2, 3
hold, that the Hessian is Lipschitz continuous and

that the level set of f at the initial point xq is
bounded. There exists 0 < k < 1 and kg € N
such that if k > kg, then

f@pia) = f(@) < w(f (k) — f(2)).

holds with probability at least 1 — 6(exp(—s) +
exp(—%os)).

We now restrict to the case where f is locally
strictly convex.

Theorem 3 Assume that Assumption 8 holds
and that the level set of f at the initial point xq
1s bounded. There exists a constant ¢ > 0 such
that for k large enough,

21 = 2™ = el|lzy — 27,

holds with probability at least 1 — 2exp(—c4—0) -
2 exp(—s). Furthermore this implies the existence
of a constant ¢ > 0 such that

f(@rgr) — f(2) = (f(ar) — f(2)).
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