
A Fast DC Algorithm for a Unified Class of

Convexity-Preserving Sparse Regularizers

05001603 東京工業大学 *張 毅 ZHANG Yi

東京工業大学 山田 功 YAMADA Isao

1. Introduction

Obtaining sparse solutions to linear systems

has been a long-standing challenge in data sci-

ence, which is usually formulated as the following

sparse regularization problem:

minimize
x

J(x) :=
1

2
‖y −Ax‖22 + λΨ(x), (1)

where y ∈ R
m, A ∈ R

m×n is the measurement

matrix, λ > 0 is a tuning parameter, and Ψ :

R
n → R is the sparseness-promoting regularizer

which approximates the l0 pseudo-norm (i.e., the

cardinality of nonzero components in x).

Among conventional regularizers, convex ones

such as the l1-norm adopted in LASSO [1] ensure

efficient solution of (1), whereas they usually suf-

fer from estimation bias. Nonconvex regularizers,

on the other hand, can yield debiased estimation,

but lead to higher computational cost.

Distinct from conventional regularizers, a novel

class of nonconvex regularizers which can main-

tain the convexity of the cost function J has been

proposed recently. A pioneering work is the gen-

eralized minimax concave (GMC) penalty [2]

ΨGMC(x) := l1(x)− (l1✷qB)(x), (2)

where l1(x) :=
∑n

i=1
|xi| is the l1-norm, qB(x) :=

1
2
‖Bx‖22 with B ∈ R

p×n is a quadratic function,

✷ is the infimal convolution operator defined as:

(f✷g)(x) := inf
z∈Rn

(f(z) + g(x− z)) . (3)

One can verify from Fig. 1 that ΨGMC is ex-

pressed as the difference between the l1-norm and

a smooth approximation of it. In the latter func-

tion (l1✷qB), l1 is a kernel regularizer which de-

termines the function shape in the outer zone,

Fig. 1: Illustration of the GMC penalty

whereas qB(x) is a smoothing function that deter-

mines the shape in the inner zone. Remarkably,

if the steering matrix B is properly selected, then

the subtrahend function (l1✷qB) is overpowered

by the data fidelity 1
2
‖y −Ax‖22, whereby ΨGMC

can yield debiased estimation without losing the

overall convexity of J [2]. To broaden the appli-

cability of ΨGMC, useful extensions which enable

variability of the kernel regularizer [3] and the

smoothing function [4] have been proposed.

In this report, we introduce a unified class

of convexity-preserving regularizers and develop

an efficient solution algorithm for it based on

difference-of-convex (DC) programming. We es-

tablish the global convergence of the proposed

algorithm. Numerical experiments verify the ef-

ficiency of the proposed algorithm.

2. A Unified Class of Convexity-

Preserving Regularizers

The proposed class of convexity-preserving reg-

ularizers is formulated as follows:

ΨCP(x) := ψ1(x)− (ψ2✷φ)(Dx), (4)

where ψ1 ∈ Γ0(R
n)1, ψ2 ∈ Γ0(R

p) are kernel

functions, D ∈ R
p×n, the smoothing function

φ ∈ Γ0(R
p) is twice continuously differentiable.

1Γ0(R
n) denotes the set of proper lower semicontinuous

convex functions from R
n to R ∪ {+∞}.
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Fig. 2: MSE vs. computation time

Table 1: Prior arts as instances of ΨCP

ψ1(x) ψ2(y) φ(y) D

GMC [2] ‖x‖1 ‖y‖1
1
2
‖By‖22 In

LiGME [3] ψ(Lx) ψ(y) 1
2
‖By‖22 L

SSR [4] ‖x‖1 ‖Ly‖1 Φ(By) In

By selecting proper building blocks, ΨCP re-

produces existing convexity-preserving regulariz-

ers (cf. Table 1). Moreover, since ΨCP is a par-

tially smoothed approximation of ψ1(x)−ψ2(Dx)

and many nonconvex sparse regularizers can be

viewed as difference-of-convex (DC) functions [5],

the proposed regularizer certainly encompasses a

large number of promising new regularizers. The

overall-convexity condition of ΨCP is as follows.

Proposition 1. If ATA � λDT∇2φ(z)D for ev-

ery z ∈ R
p, then JCP(x) :=

1
2
‖y−Ax‖22+λΨCP(x)

is a convex function.

3. A DC-Type Solution Algorithm

JCP admits the following DC decomposition:

JCP(x) =
1

2
‖y −Ax‖22 + λψ1(x)

︸ ︷︷ ︸
g

−λ(ψ2✷φ)(Dx)
︸ ︷︷ ︸

h

.

With respect to this, we developed Alg. 1 based

on a standard approach for minimizing DC func-

tions named the basic DCA scheme [5]. Remark-

ably, we established the global convergence of

Alg. 1, which makes a huge difference from nor-

mal DC algorithms that are locally convergent.

Theorem 1. Let (xk)k∈N be a sequence gener-

ated by Alg. 1. Suppose that argminx∈Rn JCP(x)

is nonempty and bounded, and that the condition

required in Prop. 1 holds, then every limit point

of (xk)k∈N is a global minimizer of JCP.

Algorithm 1: The Proposed Algorithm

Initialization: k = 0, x0 ∈ R
n.

Repeat the following until convergence.

Step 1: obtain vk by

vk ∈ argmin
v∈Rp

ψ2(v) + φ(Dxk − v),

and compute uk = λDT∇φ(Dxk − vk).

Step 2: solve

xk+1 ∈ argmin
x∈Rn

1

2
‖y−Ax‖22+λψ1(x)−〈uk, x〉,

and update k ← k + 1.

4. Numerical Experiments

We conducted experiments in standard sparse

recovery problems. The results are depicted in

Fig. 2, which verified superior efficiency of Algo-

rithm 1 in comparisons to existing methods.
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