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A Fast DC Algorithm for a Unified Class of

Convexity-Preserving Sparse Regularizers
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1. Introduction

Obtaining sparse solutions to linear systems
has been a long-standing challenge in data sci-
ence, which is usually formulated as the following
sparse regularization problem:

1
minizmize J(x) = §Hy — Az|3 + \U(z), (1)

where y € R™, A € R™*" is the measurement
matrix, A > 0 is a tuning parameter, and ¥ :
R™ — R is the sparseness-promoting regularizer
which approximates the [y pseudo-norm (i.e., the
cardinality of nonzero components in x).

Among conventional regularizers, convex ones
such as the /;-norm adopted in LASSO [1] ensure
efficient solution of (1), whereas they usually suf-
fer from estimation bias. Nonconvex regularizers,
on the other hand, can yield debiased estimation,
but lead to higher computational cost.

Distinct from conventional regularizers, a novel
class of nonconvex regularizers which can main-
tain the convexity of the cost function J has been
proposed recently. A pioneering work is the gen-
eralized minimax concave (GMC) penalty [2]

Veome(z) = l(z) — (L18gp)(z), (2)

where Iy (z) == Y1 ||z;] is the l;-norm, ¢p(z) ==
| Bz|3 with B € RP*™ is a quadratic function,

O is the infimal convolution operator defined as:

(fO09)(z) == inf (f(2) +g(z—2)). (3)

z€R™

One can verify from Fig. 1 that Wgnme is ex-
pressed as the difference between the /;-norm and
a smooth approximation of it. In the latter func-
tion (I10q¢p), 11 is a kernel regularizer which de-
termines the function shape in the outer zone,
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Fig. 1: Nlustration of the GMC penalty

whereas ¢p(z) is a smoothing function that deter-
mines the shape in the inner zone. Remarkably,
if the steering matrix B is properly selected, then
the subtrahend function (I10¢g) is overpowered
by the data fidelity ||y — Az||3, whereby ¥anc
can yield debiased estimation without losing the
overall convexity of J [2]. To broaden the appli-
cability of g, useful extensions which enable
variability of the kernel regularizer [3] and the
smoothing function [4] have been proposed.

In this report, we introduce a unified class
of convexity-preserving regularizers and develop
an efficient solution algorithm for it based on
difference-of-convex (DC) programming. We es-
tablish the global convergence of the proposed
algorithm. Numerical experiments verify the ef-
ficiency of the proposed algorithm.

2. A Unified Class
Preserving Regularizers

of Convexity-

The proposed class of convexity-preserving reg-
ularizers is formulated as follows:

Yep(z) = Y1(z) — (200)(Dx), (4)

where ¢ € To(R")!, ¢y € To(RP) are kernel
functions, D € RP*™ the smoothing function
¢ € I'p(RP) is twice continuously differentiable.

To(R™) denotes the set of proper lower semicontinuous
convex functions from R™ to R U {+oo}.
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Fig. 2: MSE vs. computation time

Table 1: Prior arts as instances of Wcp

Yi(z)  Ya(y) o(y) D

GMC [2]  lzlh Iyl 3IByl3 In
LiGME [3] o(Lz) (y) 3lByl3 L
SSR [4] lzllh Lyl ®(By) I

By selecting proper building blocks, Wcp re-
produces existing convexity-preserving regulariz-
ers (cf. Table 1). Moreover, since ¥cp is a par-
tially smoothed approximation of 1 (x) —19(Dx)
and many nonconvex sparse regularizers can be
viewed as difference-of-convex (DC) functions [5],
the proposed regularizer certainly encompasses a
large number of promising new regularizers. The
overall-convexity condition of W¢p is as follows.
Proposition 1. If ATA = ADTV2¢(2)D for ev-
ery z € RP, then Jep(z) = 3|ly— Az||3+AUcp ()

is a convex function.

3. A DC-Type Solution Algorithm

Jep admits the following DC decomposition:

Jer(x) = 31y — Al3 + X1 (2) — A(ta06) (D).

h
g

With respect to this, we developed Alg. 1 based
on a standard approach for minimizing DC func-
tions named the basic DCA scheme [5]. Remark-
ably, we established the global convergence of
Alg. 1, which makes a huge difference from nor-
mal DC algorithms that are locally convergent.

Theorem 1. Let (zj)ren be a sequence gener-
ated by Alg. 1. Suppose that arg mingern Jop ()
is nonempty and bounded, and that the condition
required in Prop. 1 holds, then every limit point
of (zk)ken is a global minimizer of Jcp.

Algorithm 1: The Proposed Algorithm

Initialization: k£ = 0,2y € R".
Repeat the following until convergence.
Step 1: obtain v by

vr € arg min v (v) + ¢(Dary, — v),
vERP

and compute uy = ADTV@(Dxy, — vy).
Step 2: solve

't
Tp+1 € argmin §||?/—A$||§+)\¢1($)—(Uk,9E>,
zeR”

and update k <+ k + 1.

4. Numerical Experiments

We conducted experiments in standard sparse
recovery problems. The results are depicted in
Fig. 2, which verified superior efficiency of Algo-

rithm 1 in comparisons to existing methods.
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