使ってみよう GIS -QGIS による人口分布の可視化-

長谷川 大輔, 渡部 大輔

近年,地理空間データを総合的に管理・加工したうえで,視覚的に表示し,高度な分析や迅速な判断を可能にす る地理情報システム (GIS) に関するソフトウェアが数多く開発されている.しかし,実際の現場で地理空間デー タを利用しようとすると,そもそもどのようなデータが整備されているのか,どうやってそのデータを入手する のかなど,最初から躓く場合も多い.本稿では実務や研究で地理空間データの利用を考えている方向けのイント ロダクションとして,国勢調査の人口データの入手から,フリーの GIS ソフト「QGIS」を使って地理空間デー タを可視化するまでの方法を解説する.

キーワード:地理情報システム,QGIS,地理空間データ

1. はじめに

近年,全世界的なデジタル地図が整備され,その膨大 な地理空間データを効率的に管理することができるア プリケーションの開発が進んだ結果,位置情報を活用し たサービスが数多く提供されています.特に,Google Earth,Google Mapsといった地図サービスの普及は, それまで地図に触れたことがなかった世界中の人々の 生活を変えるほどにインパクトがありました [1].地理 空間データとは,属性情報と,座標,線分の長さ,面 積,図形形状といった幾何的な情報で構成され,その 活用には,球面である地球上の位置を誤差の少ない形 で平面(画面)に置き換える投影変換処理が重要とな ります.

本稿の主題である"地理情報システム"(Geographic Information System: GIS)は、そのような地理空間 データを総合的に管理・加工し、画面上に適切に表示 し、高度な分析や迅速な判断を可能にする技術です [2].

わが国において, GIS を活用できる人材育成のため に,大学における GIS に関する標準カリキュラム [3] の作成がなされるとともに,GIS 実習用の教材 [4] や いくつかの初学者向けの専門書 [5-8] が作成されてい ます.

はせがわ だいすけ 東京大学生産技術研究所 〒153-8505 東京都目黒区駒場 4-6-1 hasega60@iis.u-tokyo.ac.jp わたなべ だいすけ 東京海洋大学 〒135-8533 東京都江東区越中島 2-1-6 daisuke@kaiyodai.ac.jp さらに,高等学校における新たな必履修科目として, 2022 年 4 月に導入される予定である「地理総合」に おいて,GIS を用いた実践的な教育が含められていま す.このように,今後は高等教育のみならず,初等中 等教育における GIS の利活用が進められることが期待 されています [9,10].

GIS を用いることは、非常にざっくりと言えば、「丸 い地球を平らにする」ことと言えます、つまり、地理 空間データを二次元平面や三次元空間での位置座標に 変換し、画面上に投影することで、コンピュータで解 析・可視化可能な定量的データとなり, OR の研究領域 へと持ち込むことが可能になります.具体的には、施 設配置問題や巡回セールスマン問題、配送計画問題な どのさまざまな空間的な意思決定問題に対して、モデ ルの入力データや分析のための可視化に、位置や距離 など地理空間データが多く用いられています. これま でに、プログラミングにより地理空間データを処理す る方法 [11] が紹介されていますが、ここ数年で急速に フリーの GIS ソフトの機能が向上したことや地理空間 に関するオープンデータの提供が急速に広まったこと から、これまで以上に設備面や費用面で GIS に対する 敷居が低くなったと考えられます.

そこで本稿では、オープンデータとなっている地理 空間データの入手から、GIS のフリーソフトウェアと して代表的である QGIS を対象に、インストールや環 境構築、分析に必要なデータの取得といった、オリジ ナルの地図の作成に関する具体的な手順までを、GIS ソフト初学者向けに説明します.

2. QGIS の利用方法

本節では QGIS の利用方法について, インストール方 法から地図作成を行うための環境設定まで説明します.

2.1 インストールと起動

QGIS のダウンロードサイト [12] より, OS に応じ たインストーラーをダウンロードし, インストールを 実行します. このとき, 長期リリース版 (執筆時点で は Version 3.16)の入手を推奨します. なお, QGIS は Git リポジトリ [13] も公開されたオープンソース ソフトウェアであり, インストーラーを介さない導入, ライブラリのみの導入も可能です. インストール完了 後, スタートメニュー (mac 版の場合は Launchpad) から QGIS Desktop 3.16.xx を起動します. QGIS の 画面構成は図 1 に示すとおり, 表示やアイテムの選択 を行う地図ビューを中心に, 機能を選択するメニュー バーやツールバー, データの表示・表示順を制御する レイヤパネルなどがあります.

2.2 環境設定

2.2.1 ファイルの拡張子の表示

地理空間データでよく用いられる Shapefile は、複数 のファイルがセットとなっており、データの追加を行 う際には.shp ファイルを選択する必要があります.そ のため、以下の項目を確認して拡張子を表示させます.

- Windows10:エクスプローラの表示タブの「ファ イル名拡張子」にチェック
- macOS: Finderの環境設定,詳細タブから「すべてのファイル名拡張子を表示」にチェック

2.2.2 ベースマップの追加

地図作成時に背景としてベースマップを追加するこ とで,道路・鉄道や主要施設などの周辺地理を把握で きる地物を手軽に表示することができます.デフォル

図1 QGIS の画面構成

トで OpenStreetMap が追加されていますが,国土地 理院より提供されているタイル地図を追加することが できます.

- ブラウザパネル [XYZ Tiles] 右クリック → [新し い接続] より,以下の情報を入力
- 名前:標準地図
- URL : https://cyberjapandata.gsi.go.jp/xyz/ std/{z}/{x}/{y}.png
- 最小ズームレベル:5
- 最大ズームレベル:18

これで,以後の操作で地理院地図を追加できます. そ の他,航空写真や起伏図など,地理院タイル一覧 [14] に 追加可能な地図が掲載されています. 追加後は [XYZ Tiles] から要素をダブルクリック,もしくはレイヤパ ネルにドラッグすることで表示することができます.

2.2.3 プラグインの表示と追加

QGIS では, 公開された拡張機能を追加することが できます. ここでは, 任意地点の Google Street View を表示できる「Street View」を追加します.

- メニューバー [プラグイン]→[プラグインの管理 とインストール]を開く
- 2. 検索バーに "Street View" と入力
- 3. 表示される「StreetView」をインストール

実行するとツールバーにアイコンが追加されます. アイコンをクリックすることでマウスポインタが変わり,地図上をクリックすることでブラウザが立ち上がり. その位置の StreetView が表示されます.

3. 地理空間データの入手

3.1 主なデータ形式

地理空間データとして流通している主なファイル形 式を表1に示します.地理空間データのデファクトス タンダードはESRI社が提唱したShapefileであり、こ れから紹介する取得先においても当形式での配布が多 く、もちろんQGISでも読み込み可能となっています. 注意点として、Shapefileは.shp、.shx、.dbf、(.prj)ファ イルが同じディレクトリにある必要があり、.shpファ イルだけ移動させると機能しなくなります.Shapefile の説明については本特集の薄井先生の記事[15]もご参 照ください.QGISではGeopackage形式が標準とし て推奨されています.その他、近年Webアプリケー ションとの親和性が高いXMLをベースとしたGML、 KML形式や、JSONをベースとしたGeoJSON形式 の普及が進んでいます.

表1 地理空間データの種類

名称	拡張子	特徴
Shapefile	.shp, .shx .dbf, .prj	地理空間データの一般的な形式 で,複数ファイルで利用 属性名長,容量に制約あり QGIS でのデフォルト形式
Geopackage	.gpkg	QGIS のレイヤスタイルも保 存できる
KML	.kml	XML 形式を拡張した, Google Earth のデフォルト形式
GeoJSON	.geojson	JSON 形式を拡張, アプリケー ション開発と親和性が高い
GeoTiff	.tiff	TIFF 形式に空間参照情報が付 与されたもので,航空写真など のラスターデータで活用

出典:筆者作成

3.2 データの主な取得先

QGIS には地理空間データそのものは付属しておら ず,流通しているデータを入手する必要があります. 主要な入手先と、取得できるデータの特徴を表2に示 します.政府統計の窓口では、国勢調査の人口データ をはじめ、さまざまな統計データを取得することが可 能です. トップページ「地図」をクリックすると統計 データと境界データのダウンロードができます.国土 数値情報では土地利用、地形、公共施設などのさまざ まな GIS データを Shapefile 形式, GeoJSON 形式で 入手することが可能です.ただし、ダウンロードする 際には規約や属性,座標系の定義を確認してください. 基盤地図情報では建築物、測量基準点といった国土地 理院発行の地図に掲載されている地物情報, 10 m, 5 m メッシュの精緻な標高データ (DEM) もダウンロード 可能です。G 空間情報センターでは産官学さまざまな オープン・有償データが取得可能で、人流データや建 築物の 3D モデリングデータなどが公開されているの が特徴となっています、その他、海外のデータについ ても米国の詳細なセンサスデータや、人口分布のラス ターデータなど、多様なデータを入手することが可能 です

3.3 国勢調査・人口データの取得

本節では国勢調査の人口データを取得する例として 東京都の町丁目の境界データ,町丁目別・5歳階級別 人口データを入手する方法を説明します.なお,ダウ ンロード先は執筆当時(2021年7月)に確認したも のになります.

3.3.1 境界データのダウンロード

図形情報を含んだ境界データをダウンロードします. 政府統計の総合窓口の Web ページ [16] に行き,"地

表2 地理空間データの主な入手先

地域	入手先	入手可能データ
日本	政府統計の総合 窓口 [16]	国勢調査の人口データ,各種 センサスデータ
	国土数値情報 [17]	土地利用, 地形, 公共施設な どの様々な GIS データ
	基盤地図情報 [18]	建築物, 測量基準点地物情報, 標高データ (DEM)
	G 空間情報セン ター [19]	産官学で公開された人流・建 築物等のオープンデータ
世界	米国国勢調査局 (US Census Bureau)[20] Natural Earth [21] Global Human	人口(国勢調査), Amer- ican Community Survey (ACS), Economic Census 交通,境界,都市,海洋・河 川など 全世界の250 m, 1 km メッ
	Settlement Layer[22]	シュ単位の推定人口

出典:朝日ら [8] を基に筆者作成

図(統計 GIS)"→"境界データダウンロード"にア クセスします.ここで,境界一覧で小地域(町丁目) 単位とメッシュ単位を選択できるので,"小地域"→ "国勢調査"→"2015 年"→"小地域(町丁・字等別) (JGD2000)"と選択します.なお,メッシュデータの ダウンロードは標準地域メッシュコードでの選択とな るので,確認ページ[23]などで入手先のメッシュコー ドを確認しておく必要があります.

データ形式一覧のページでは、測地系(緯度経度・ 平面直角)と形式(Shapefile・KML・GML)が選択 できます. ここでは"世界測地系緯度経度・Shapefile" を選択し、"13 東京都"よりダウンロードします. な お、東京都以外のデータをダウンロードする際はここ で別の地域を選択してください.

3.3.2 統計データのダウンロード

統計情報をもつテーブルデータをダウンロードしま す.ここでは、町丁目別・5歳階級別人口データを入手 します.境界データと同様に、政府統計の総合窓口の Web ページ [16] に行き、ダウンロードした境界デー タと同じ年度・場所を選択するように選択します."地 図(統計 GIS)" → "統計データダウンロード" → "国 勢調査" → "2015 年" → "小地域(町丁・字等別)" を選択します.境界データには総人口と総世帯数は含 まれていますが、年齢別の人口は含まれていないので、 "年齢(5歳階級、4 区分)別、男女別人口"を選択し、 東京都のデータをダウンロードします.ここで、統計 データの定義書も併せてダウンロードし、追加対象の 属性定義を確認します.

4. 人口コロプレスマップの作成

本節ではダウンロードした国勢調査データを,QGIS を使って可視化していきます.今回は,人口の多寡で 町丁目を塗り分けた地図(=人口コロプレスマップ)を 作成します.例として東京都江東区を対象に作業を進 めます.

4.1 実行環境の整備

実行前に,作業用のフォルダを作成し,その中にダ ウンロードした zip ファイルを入れるデータフォルダ を作成します.前述のとおり Shapefile が複数ファイ ルで構成され,さらに処理にあたって多くの中間ファ イルが作成されるため,ファイルの散在を防ぐためで す.また,プロジェクトファイルにはデータの参照情 報が記録されるため,ファイル単体で移動させてしま うとデータを参照できなくなるため注意が必要です.

フォルダを整理したら QGIS を起動し, メニューバー [プロジェクト]→[名前をつけて保存] より, 作業フォル ダに.qgz ファイルを保存してください.

4.2 データの追加と抽出

本節ではダウンロードした Shapefile 形式の境界デー タを追加します. 追加前にデータフォルダ内の zip ファ イルを解凍します

4.2.1 Shapefile の追加

レイヤパネルに h27ka13 レイヤ,標準地図レイヤを 追加し,地図を表示します.

- QGIS のメニューバー [レイヤ]→[レイヤの追加]→[ベクタレイヤの追加] を開きます
- 解凍された.shp ファイルを選択します (東京都の 場合は h27ka13.shp).
 - ほかの.dbfや.prjファイルを選択しないでください(拡張子の設定に関しては 2.1 節参照).
 - macOS/Linuxの場合は、文字化けを回避する ためにエンコーディングで "Shift-JIS"を選択 してください。
- [追加] で地図ビューに図形が表示され、レイヤパ ネルに "h27ka13" が追加されます。
- 4. ブラウザパネル [XYZ Tiles] から,「標準地図」 ベースマップレイヤを追加します.
- 背景用の地図が境界データの上に表示されるため、 レイヤパネルで境界データレイヤの順序を変更し てください。

4.2.2 データの抽出

追加した東京都のデータから,江東区のデータを抽 出します.属性テーブルで江東区を抽出できる属性を

図2 フィルタの設定

図3 テキストデータの形式と属性定義ファイル

確認した後、フィルタで抽出し、出力します(図2).

- "h27ka13" レイヤ右クリック [属性テーブル] よ り属性テーブルを開き, "CITY_NAME" 列に "江東区"の値があることを確認します.
- "h27ka13"レイヤ右クリック [フィルタ] よりク エリビルダを表示します。
- フィルタ式に "CITY_NAME" = '江東区' を入 力し, [テスト] でフィルタの仮実行を行います.
- 4. 件数が表示されたら [OK] で確定します.
- "h27ka13" レイヤ右クリック [エクスポート][地 物の保存] より, 江東区のみのデータ "h27_koto" をデータフォルダに出力します.
- 不要となる "h27ka13" はレイヤパネルより削除, もしくは非表示にします.

4.3 統計データの整形と追加

次に,統計データの追加を行います.ただし,ダウ ンロードしたそのままのデータでは追加および加工が 困難となるため,取り込み前に Excel を用いた加工を 行います.また,カラム定義ファイルを作成したうえ で QGIS に追加します.

4.3.1 テキストデータの整形

Excel で以下の作業を進めます.

Excel で [データ] タブ [テキストまたは CSV から] より,ダウンロードした年齢別人口データを

開きます(今回の場合はtblT000849C13.txt).

- 結合キーとなる市町村コード "KEY_CODE"と、 総数 75 歳以上人口 "T000849020"の2列のみ で、2 行目を削除したテーブルを作成します。
- テーブルを csv 形式で保存します (ここでは "pop2015_over75.csv" とします).

4.3.2 カラム定義ファイルの作成

先ほどの csv データをそのまま読み込むと,格納さ れたデータの形式上,人口データが文字列として認識 されるため,属性型を定義した.csvt ファイルを作成し ます.このとき,データ結合に用いる属性の型も統一 する必要があるため,QGIS で確認します(図 3).

- QGIS で "h27_koto" のプロパティ [属性] を開き, 結合に用いる市町村コード "KEY_CODE" の属 性型が "string" であることを確認します.
- 2. メモ帳などのテキストエディタを開きます.
- pop2015_over75.csv の属性 ["KEY_CODE", "T000849020"] で定義したい属性型, "string", "integer"と型を記載します.
- csv ファイル名と同じ名称の "pop2015_over75. csvt"を csv と同じフォルダに保存します.

4.3.3 データの追加と結合

先ほどの csv データを QGIS に追加し,境界データ に結合します.

- メニューバー [レイヤ]→[レイヤの追加]→[CSV テキストファイル] より、作成した csv ファイル "pop2015_over75.csv" を選択します
- ジオメトリ定義で"ジオメトリなし"を選択して、 レイヤに追加します.
- "h27_koto"レイヤ右クリック [プロパティ]の, [テーブル結合]より,追加した csv ファイルを KEY_CODE 属性で結合します.属性テーブル に 75 歳以上人口 "T000849020" が追加されてい ます.

4.4 <u>座標系の</u>設定

プロジェクトの座標系を,緯度経度ベースの座標系 (地理座標系)から XY 座標に投影した座標系(投影 座標系)に変更し,画面表示を切り替えます.これは, 地理座標系のまま地図を出力すると,Y軸・緯度方向 につぶれた形になってしまうためです.座標系の設定 はデータソースの定義をよく確認し,適切に設定する 必要があります.座標系・投影法に関する詳細な説明 は[3,9],または本特集の薄井先生の記事[15]を御覧 ください.今回の設定方法は以下のとおりです.

- メニューバー [プロジェクト][プロパティ] から [座 標参照系],もしくは画面右下に表示されている EPSG コードの部分をクリックします.
- "EPSG:4612"が設定されていますので、 "JGD2000/Japan Plane Rectangular CS IX EPSG:2451"(平面直角座標系9系)に変更し ます。
- 画面右下の EPSG コードが 2451 になり、地図の 表示が変化します。
- 4.5 シンボルの設定

"h27_koto" を人口で塗り分け, コロプレスマップを 作成します (図 4).

- "h27_koto"レイヤ右クリック[プロパティ]の[シ ンボロジ][連続値による定義]を選択します.
- 値を "JINKO" に設定し、モード、クラスを変更 することで、各シンボルの閾値が変更されます。
 [OK] で地図に反映されます。
 - ここで値を"T000849020"に設定すれば75歳
 以上人口の分布が示されます。
 - モードでは各分類の要素量を均一にする等量分類や、閾値を等間隔にする等間隔分類などの分類方法の設定が可能です。

ここで,値が高い地域,低い地域の特徴を把握する ため,ベースマップを表示するようにレイヤの透過度

図4 シンボルの設定とコロプレスマップ

を変更します.

 "h27_koto" レイヤ右クリック [プロパティ] の [シ ンボロジ][レイヤレンダリング] から透過度を調整 します.

4.6 ラベルの設定

各地物上に町丁目名などのラベルを表示することが できます.

- "h27_koto"レイヤ右クリック[プロパティ]の[ラ ベル]より、値で表示したい属性を選択します.
- 2. 文字色・フォントサイズなどを調整し[OK] で地 図上に指定した属性値を表示することができます.
 ラベルはレイヤ右クリック [ラベル] で表示/非表示

4.7 印刷レイアウトの調整と出力

を切り替えることができます.

地図の表示要素が作成できましたら,凡例や方位な どを追加した印刷レイアウトを作成します(図 5).

- メニューバー [プロジェクト]→[新規印刷レイア ウト]より、レイアウト画面が開きます.
- 2. レイアウト画面のメニューバー [追加] から, 地図 を追加します. 画面上をドラッグするとボックス

が表示されるので、任意の大きさに設定します.

- 地図の表示はアイテム全体が表示される縮尺になります.位置や縮尺を変更する場合は、地図のアイテムプロパティの[地図のインタラクティブ操作]ボタンより、調整することが可能です.
- 同様に[追加]から、凡例、方位記号、スケール バー、ラベルを追加します。それぞれ大きさは地 図と同様にボックスにて調整が可能です。
- 5. 凡例のアイテムプロパティを開き,"自動更新"の チェックを外したうえで,不要要素(今回の場合 はベースマップの標準地図, h27ka13)を削除し ます.
- ラベルのアイテムプロパティより、地理院地図の クレジット [14] を記載します。
- 7. クレジットの表示位置,フォントサイズを調整し ます.
- 8. 印刷物の見た目が決定しましたら、[レイアウト][PDF 出力] より、PDF 出力画面を開きます.
- RDFメタデータのエクスポート」「ジオメトリ を簡略化したファイルを縮小」にチェックを入れ

Legend (凡例) の アイテムプロパティ

> 自動更新の ェックを外す

不要な要素を削除

MINES LA BRAN SARRES

図5 印刷レイアウトの設定(左:地図,右:凡例)

図6 QGIS を使った空間処理・演算例

て保存します.

最後に,印刷レイアウトを閉じて,地図画面でプロジェ クトを保存します.

5. おわりに

本稿では、地理空間データの入手方法とフリーの GIS ソフトウェア「QGIS」を用いた地図作成方法を説明し ました.今回紹介したのは機能の一部であり、QGIS には領域でのクリップやディゾルブといったジオプロ セシング処理、図6に示すカーネル密度分析やボロノ イ分析といった空間演算、距離行列の作成や道路ネッ トワークを使った経路探索などが標準で搭載されてい ます.

OR における GIS の利活用について関心をもった方 は、本機関誌における GIS ソフトウェアに関する紹介 論文 [10] や地理空間データに関する特集号 [11] をご 参照ください.

参考文献

- ビル・キルデイ、大熊希美訳、『世界を変えた地図グーグル マップ誕生の軌跡 NEVER LOST AGAIN グーグルマッ プ誕生』, TAC 出版, 2018.
- [2] 国土地理院,「GISとは…」, http://www.gsi.go.jp/GIS/ whatisgis.html (2021 年 7 月 26 日閲覧)
- [3] 浅見泰司,貞広幸雄他(編),『地理情報科学—GIS スタンダードー』,古今書院,2015.
- [4] 山内啓之,小口高,早川裕弌,瀬戸寿一, "GIS の標準コ アカリキュラムと知識体系を踏まえた実習用オープン教材 の開発と評価," E-journal GEO, 14, pp. 288–295, 2019.
- [5] 河端瑞貴,『経済・政策分析のための GIS 入門 1-基礎-』, 古今書院, 2018.
- [6] 河端瑞貴(編),『経済・政策分析のための GIS 入門 2-空間統計ツールと応用-」,古今書院, 2018.
- [7] 喜多耕一,『業務で使う QGIS ver.3 完全使いこなしガイ ド』, 全国林業改良普及協会, 2019.

- [8] 朝日孝輔,大友翔一,水谷貴行,山手規裕、『[オープン データ+QGIS] 統計・防災・環境情報がひと目でわかる地 図の作り方 改訂新版』,技術評論社,2019.
- [9] 貞広幸雄,山田育穂,石井儀光(編),『空間解析入門』,朝 倉書店, 2018.
- [10] 渡部大輔, "OR のための地理情報システム (GIS) ソフトウェア入門,"オペレーションズ・リサーチ:経営の科学, 65, pp. 226-231, 2020.
- [11] 鳥海重喜(編), "特集 使ってみよう空間データ/時空間データ,"オペレーションズ・リサーチ:経営の科学, 58, pp. 4-36, 2013.
- [12] QGIS,「QGIS ダウンロードサイト」, https://qgis.org/ ja/site/forusers/download.html(2021 年7月 26 日閲覧)
- [13] GitHub, GitHub-QGIS, https://github.com/qgis(2021 年 7 月 26 日閲覧)
- [14] 国土地理院,「地理院タイル一覧」, https://maps.gsi.go. jp/development/ichiran.html(2021 年 7 月 26 日閲覧)
- [15] 薄井宏行, "GIS とは何か―仕組み・特徴・使いこなし方―," オペレーションズ・リサーチ:経営の科学, 66, pp. 793–799, 2021.
- [16] 総務省統計局,「政府統計の総合窓口」, https://www. e-stat.go.jp/(2021 年 7 月 26 日閲覧)
- [17] 国土交通省、「国土数値情報ダウンロードサービス」、
 https://nlftp.mlit.go.jp/ksj/(2021 年 7 月 26 日閲覧)
- [18] 国土地理院、「基盤地図情報ダウンロードサービス」、 https://fgd.gsi.go.jp/download/menu.php (2021 年 7月 26 日閲覧)
- [19] 一般社団法人社会基盤情報推進協議会、「G 空間情報センター」, https://www.geospatial.jp/gp_front/(2021 年7月26日閲覧)
- [20] United States Geological Survey, GISData, https:// www.usgs.gov/products/data-and-tools/overview (2021 年 7 月 26 日閲覧)
- [21] Natural Earth, http://www.naturalearthdata.com/ (2021 年 7 月 26 日閲覧)
- [22] European Commission, GHSL-Global Human Settlement Layer, https://ghsl.jrc.ec.europa.eu/ghs_pop. php (2021 年 7 月 26 日閲覧)
- [23] 地図上で標準地域メッシュを確認するページ, http:// www.gis-tool.com/mapview/areameshmap.html
 (2021 年 7 月 26 日閲覧)