
Proceedings of the Twenty-Sixth RAMP Symposium
Hosei University, Tokyo, October 16-17, 2014

Multi-Row Presolve Reductions in Mixed Integer

Programming

Tobias Achterberg1ú, Robert E. Bixby1†, Zonghao Gu1‡, Edward Rothberg1§,
and Dieter Weninger2¶

Abstract Mixed integer programming has become a very powerful tool for modeling and solv-
ing real-world planning and scheduling problems, with the breadth of applications appearing to
be almost unlimited. A critical component in the solution of these mixed-integer programs is
a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of
preprocessing techniques that reduce the size of and, more importantly, improve the “strength”
of the given model formulation, that is, the degree to which the constraints of the formulation
accurately describe the underlying polyhedron of integer-feasible solutions. In the Gurobi com-
mercial mixed-integer solver, the presolve functionality has been steadily enhanced over time,
now including a number of so-called multi-row reductions. These are reductions that simulta-
neously consider multiple constraints to derive improvements in the model formulation. In this
paper we give an overview of such multi-row techniques and present computational results to
assess their impact on overall solver performance.

Keywords mixed integer programming, presolving, Gurobi

1. Introduction

Presolve for mixed integer programming (MIP) is a set of routines that remove redundant
information and strengthen a given model formulation with the aim of accelerating the subse-
quent solution process. Presolve can be very e�ective; indeed, in some cases it is the di�erence
between a problem being intractable and solvable [2].

In this paper we di�erentiate between two distinct stages or types of presolve. Root pre-

solve refers to the part of presolve that is typically applied before the solution of the first linear
programming relaxation, while node presolve refers to the additional presolve reductions that
are applied at the nodes of the branch-and-bound tree.

Several papers on the subject of presolve have appeared over the years, though the to-
tal number of such publications is surprisingly small given the importance of this subject.
One of the earliest and most important contributions was the paper by Brearly et al. [9].

1 Gurobi Optimization, 3733-1 Westheimer Rd. 1001, Houston, Texas 77027 USA
2 University Erlangen-Nürnberg, Department Mathematik, Lehrstuhl für Wirtschaftsmathematik, Cauerstras̈e 11,

91058 Erlangen
ú E-mail address: achterberg@gurobi.com
† E-mail address: bixby@gurobi.com
‡ E-mail address: gu@gurobi.com
§ E-mail address: rothberg@gurobi.com
¶ E-mail address: dieter.weninger@math.uni-erlangen.de

－ 181 －

The Twenty-Sixth RAMP Symposium

This paper describes techniques for removing redundant rows, variable fixings, generalized
upper bounds, and more. Presolve techniques for zero-one inequalities were investigated by
Guignard and Spielberg [13], Johnson and Suhl [16], Crowder et al. [11], and Ho�man and
Padberg [14]. Andersen and Andersen [3] published results in the context of linear program-
ming and Savelsbergh [18] investigated preprocessing and probing techniques for general MIP
problems. Details on the implementation of various presolve reductions are discussed in Suhl
and Szymanski [20], Atamtürk and Savelsbergh [5], and Achterberg [1].

Investigations on the performance impact of di�erent features of the CPLEX MIP solver
were published in [7] and [8], and most recently in [2]. One important conclusion was that
presolve together with cutting plane techniques are by far the most important individual
tools contributing to the power of modern MIP solvers.

This paper focuses on one particular subset of the root presolve algorithms that are em-
ployed in the Gurobi commercial MIP solver. We designate these reductions as multi-row

presolve methods. They derive improvements to the model formulation by simultaneously
examining multiple problem constraints. They are usually more complex than "single-row"
reductions. In addition, they often present significant trade-o�s between e�ectiveness and
computational overhead. However, despite the associated overhead, they provide on average
a significant performance improvement for solving MIPs.

The paper is organized as follows. Section 2 introduces the primary notation used in the
remainder of the paper. Sections 3 to 7 constitute the main part of the paper; they describe
the individual components of the Gurobi multi-row presolve engine. Finally, Section 8 pro-
vides computational results to assess the performance impact of the algorithms covered in
this paper. We summarize our conclusions in Section 9.

2. Notation

Definition 1. Given a matrix A œ Rm◊n
, vectors c œ Rn

, b œ Rm
, ¸ œ (R fi {≠Œ})n

,

u œ (R fi {Œ})n
, variables x œ ZI ◊ RN\I

with I ™ N = {1, . . . , n}, and relations

¶i œ {=, Æ, Ø} for every row i œ M = {1, . . . , m} of A, then the optimization problem

MIP = (M, N, I, A, b, c, ¶, ¸, u) defined as

min c

T
x

s.t. Ax ¶ b

¸ Æ x Æ u

(1)

is called a mixed integer program (MIP).

Note that in the above definition, we have employed the convention that, unless otherwise
specified, vectors such as c and x, when viewed as matrices, are considered column vectors,
that is, as matrices with a single column. Similarly, a row vector is a matrix with a single
row.

The elements of the matrix A are denoted by aij , i œ M , j œ N . We use the notation Ai·

to identify the row matrix given by the i-th row of A. Similarly, A·j is the column matrix
given by the j-th column of A. supp (Ai·) = {j œ N : aij ”= 0} denotes the support of Ai·,

－ 182 －

The Twenty-Sixth RAMP Symposium

and supp (A·j) = {i œ M : aij ”= 0} denotes the support of A·j . For a subset S ™ N we define
AiS to be the vector Ai· restricted to the indices in S. Similarly, xS denotes the vector x

restricted to S.
Depending on the bounds ¸ and u of the variables and the coe�cients, we can calculate

a minimal activity and a maximal activity for every row i of problem (1). Because lower
bounds ¸j = ≠Œ and upper bounds uj = Œ are allowed, infinite minimal and maximal row
activities may occur. To ease notation we thus introduce the following conventions:

Œ + Œ := Œ s · Œ := Œ for s > 0
≠Œ ≠ Œ := ≠Œ s · Œ := ≠Œ for s < 0

We can then define the minimal activity of row i by

inf{Ai·x} :=
ÿ

jœN
aij>0

aij¸j +
ÿ

jœN
aij<0

aijuj (2)

and the maximal activity by

sup{Ai·x} :=
ÿ

jœN
aij>0

aijuj +
ÿ

jœN
aij<0

aij¸j (3)

In an analogous fashion we define the minimal and maximal activity inf{AiSxS} and
sup{AiSxS} of row i on a subset S ™ N of the variables.

3. Redundancy detection

A constraint r œ M of a MIP is called redundant if the solution set of the MIP stays identical
when the constraint is removed from the problem:

Definition 2. Given a MIP = (M, N, I, A, b, c, ¶, ¸, u) of form (1), let

PMIP = {x œ ZI ◊ RN\I : Ax ¶ b, ¸ Æ x Æ u}
be its set of feasible solutions. For r œ M let MIPr be the sub-MIP obtained by deleting

constraint r, i.e.,

MIPr = (M \ {r}, N, I, AS·, bS , c, ¶S , ¸, u)

with S = M \ {r}. Then, constraint r is called redundant if PMIP = PMIPr .

Note that deciding whether a given constraint r is non-redundant is N P-complete, be-
cause deciding feasibility of a MIP is N P-complete: given a MIP we add an infeasible row
0 Æ ≠1. This infeasible row is non-redundant in the extended MIP if and only if the original
MIP is feasible.

Moreover, removing MIP-redundant rows may actually hurt the performance of the MIP
solver, because this can weaken the LP relaxation. For example, cutting planes are compu-
tationally very useful constraints, see for example [7] and [2], but they are redundant for the
MIP: they do not alter the set of integer feasible solutions; they only cut o� parts of the
solution space of the LP relaxation. Consequently, redundancy detection is mostly concerned

－ 183 －

The Twenty-Sixth RAMP Symposium

with identifying constraints that are even redundant for the LP relaxation of the MIP.
Identifying whether a constraint is redundant for the LP relaxation can be done in poly-

nomial time. Namely, for a given inequality Ar·x Æ br it amounts to solving the LP

b

ı
r := max{Ar·x : AS·x ¶S bS , ¸ Æ x Æ u}

with S = M\{r}, i.e., AS·x¶SbS representing the sub-system obtained by removing constraint
r. The constraint is redundant for the LP relaxation if and only if b

ı
r Æ br.

Even though it is polynomial, solving an LP for each constraint in the problem is usually
still too expensive to be useful in practice. Therefore, Gurobi solves full LPs for redundancy
detection only in special situations when it seems to be e�ective for the problem instance
at hand. Typically, we employ simplified variants of the LP approach by considering only a
subset of the constraints.

The most important special case is the one where only the bounds of the variables are
considered. This is the well-known “single-row” redundancy detection based on the supre-
mum of the row activity as defined by equation (3): an inequality Ar·x Æ br is redundant
if sup{Ar·x} Æ br. The next, but already much more involved, case is to use one additional
constraint to prove redundancy of a given inequality. Here, the most important version is
the case of parallel rows, which will be discussed in Section 4. Finally, one may also use
structures like cliques or implied cliques to detect redundant constraints in a combinatorial
way.

Another case of multi-row redundancy detection is to find linear dependent equations
within the set of equality constraints. This can be done by using a so-called rank revealing

LU factorization as it is done by Miranian and Gu [17]. If there is a row 0 = 0 in the
factorized system, the corresponding row in the original system is linear dependent and can
be removed. If the factorized system contains a row 0 = br with br ”= 0, then the problem is
infeasible.

4. Parallel and nearly parallel rows

A special case of redundant constraints are two rows that are identical up to a positive scalar.
Such redundancies are identified as part of the so-called parallel row detection. Two rows
q, r œ M are called parallel if Aq· = sAr· for some s œ R, s ”= 0. If q and r are parallel, then
the following holds:

1. If both constraints are equations

Aq·x = bq

Ar·x = br

then r can be discarded if bq = sbr. The problem is infeasible if bq ”= sbr.
2. If exactly one constraint is an equation

Aq·x = bq

Ar·x Æ br

－ 184 －

The Twenty-Sixth RAMP Symposium

then r can be discarded if bq Æ sbr and s > 0, or if bq Ø sbr and s < 0. The problem is
infeasible if bq > sbr and s > 0, or if bq < sbr and s < 0.

3. If both constraints are inequalities

Aq·x Æ bq

Ar·x Æ br

then r can be discarded if bq Æ sbr and s > 0. On the other hand, q can be discarded
if bq Ø sbr and s > 0. For s < 0, the two constraints can be merged into a ranged row

sbr Æ Aq·x Æ bq if bq > sbr and into an equation Aq·x = bq if bq = sbr. The problem is
infeasible if bq < sbr and s < 0.

Similar to what is described by Andersen and Andersen [3], the detection of parallel rows
in Gurobi is done by a two level hashing algorithm. The first hash function considers the
support of the row, i.e., the indices of the columns with non-zero coe�cients. The second
hash function considers the coe�cients, normalized to have a maximum norm of 1 and to
have a positive coe�cient for the variable with smallest index. Still it can happen that many
rows end up in the same hash bin, so that a pairwise comparison between the rows in the
same bin is too expensive. In this case, we sort the rows of the bin lexicographically and
compare only direct neighbors in this sorted bin.

A small generalization of parallel row detection can be done by considering singleton
variables in a special way. A singleton variable xj is a variable which has only one non-zero
coe�cient in the matrix, i.e., |supp (A·j)| = 1. Let x1 and x2 be two di�erent singleton
variables, C = {3, . . . , n}, and q, r œ M be two di�erent row indices such that AqC = sArC

with s œ R. Then the following holds:

1. If both constraints are equations

aq1x1 + AqCxC = bq

ar2x2 + ArCxC = br

with ar2 ”= 0, then we can substitute x2 := tx1 + d with t = aq1/(sar2) and
d = (br ≠ bq/s)/ar2, provided that we tighten the bounds of x1 to

¸1 := max{¸1, (¸2 ≠ d)/t} and u1 := min{u1, (u2 ≠ d)/t} for t > 0,

¸1 := max{¸1, (u2 ≠ d)/t} and u1 := min{u1, (¸2 ≠ d)/t} for t < 0.

Furthermore, after substitution the two rows are parallel, and constraint r can be dis-
carded.

2. If exactly one constraint is an equation and only this equation contains an additional
singleton variable:

aq1x1 + AqCxC = bq

ArCxC Æ br

－ 185 －

The Twenty-Sixth RAMP Symposium

with aq1 ”= 0, we can tighten the bounds of x1 by

¸1 := max{¸1, (bq ≠ sbr)/aq1} for saq1 > 0,

u1 := min{u1, (bq ≠ sbr)/aq1} for saq1 < 0.

Furthermore, after the bound strengthening of x1 the inequality r becomes redundant
and can be discarded.

3. Suppose both constraints are inequalities

aq1x1 + AqCxC Æ bq

ar2x2 + ArCxC Æ br

with aq1 ”= 0, ar2 ”= 0, s > 0, bq = sbr, c1c2 Ø 0, aq1¸1 = sar2¸2, and aq1u1 = sar2u2. If
x1 and x2 are continuous variables, {1, 2} ™ N \ I, we can aggregate x2 := aq1/(sar2)x1
and discard constraint r. We can do the same if both variables are integer, {1, 2} ™ I,
and aq1 = sar2.

In Gurobi, the detection of “nearly parallel” rows is done together with the regular paral-
lel row detection, see again [3]. To do so, we temporarily remove singleton variables from the
constraint matrix and mark the constraints that contain these variables. Now, if the parallel
row detection finds a pair of parallel row vectors and any of these rows is marked, we are in
the “nearly parallel” row case. Otherwise, we are in the regular parallel row case.

5. Non-zero cancellation

Adding equations to other constraints leads to an equivalent model, potentially with a di�er-
ent non-zero structure. This can be used to decrease the number of non-zeros in the coe�cient
matrix A, see for example Chang and McCormick [10]. More precisely, assume we have two
rows

AqSxS + AqT xT + AqUxU = bq

ArSxS + ArT xT + ArV xV Æ br

with q, r œ M and
S fi T fi U fi V = supp (Aq·) fi supp (Ar·)

being a partition of the joint support supp (Aq·) fi supp (Ar·) of the rows. Further assume
that there exists a scaler s œ R such that AqS = sArS and Aqj ”= sArj for all j œ T . Then,
subtracting s times row q from row r yields the modified system:

AqSxS + AqT xT + AqUxU = bq

+ (ArT ≠ sAqT)xT ≠ sAqUxU + ArV xV Æ br ≠ sbq.

The number of non-zero coe�cients in the matrix is reduced by |S| ≠ |U |, so the transforma-
tion should be applied if |S| > |U |.

For mixed integer programming, reducing the number of non-zeros in the coe�cient ma-
trix A can be particularly useful because the run-time of many sub-routines in a MIP solve

－ 186 －

The Twenty-Sixth RAMP Symposium

depends on this number. Furthermore, non-zero cancellation may generate singleton columns
or rows, which opens up additional presolving opportunities.

For this reason, a number of methods applied in Gurobi presolve try to add equations to
other rows in order to reduce the total number of non-zeros in the matrix, each method hav-
ing a di�erent trade-o� regarding the complexity of the algorithm and its e�ectiveness and
applicability. A relatively general but expensive method picks equations from the system and
checks for each other row with a large common support S fiT whether there is an opportunity
for canceling non-zeros using the equation at hand. Other methods look for special struc-
tures (e.g., cliques) in the matrix and focus on eliminating the non-zeros associated with those
structures. This is often much faster than the more general algorithm and can be e�ective
for certain problem classes. But even though the structure based algorithms are empirically
faster than the more general versions, their worst-case complexity is still quadratic in the
maximal number of non-zeros per column or row. Thus, we use a work limit to terminate
the algorithm prematurely if it turns out to be too expensive for a given problem instance.

In any case, adding equations to other constraints needs to be done with care. Namely,
if the scalar factor s used in this aggregation is too large, this operation can easily lead to
numerical issues in the subsequent equation system solves and thus in the overall MIP solving
process. For this reason, Gurobi does not use aggregation weights s with |s| > 1000 to cancel
non-zeros.

6. Bound and coe�cient strengthening

Savelsbergh [18] presented the fundamental ideas of bound and coe�cient strengthening for
MIP that are still the backbone of the presolving process in modern MIP solvers like Gurobi.
Moreover, he already described these reductions in the context of multi-row presolving. Nev-
ertheless, due to computational complexity, implementations of these methods are often only
considering the single-row case.

In its most general form, bound and coe�cient strengthening can be described as follows.
Given an inequality

ArSxS + arjxj Æ br (4)

with S = N \ {j} we calculate bounds ¸rS , urS œ R fi {≠Œ, Œ} such that

¸rS Æ ArSxS Æ urS

for all integer feasible solutions x œ PMIP. Using ¸rS we can potentially tighten one of the
bounds of xj :

xj Æ (br ≠ ¸rS)/arj if arj > 0
xj Ø (br ≠ ¸rS)/arj if arj < 0

Bound strengthening can also be applied to equations by processing them as two separate
inequalities.

If xj is an integer variable, i.e., j œ I, we can use urS to strengthen the coe�cient of xj

－ 187 －

The Twenty-Sixth RAMP Symposium

in inequality (4). Namely, if arj > 0, uj < Œ, and

arj Ø d := br ≠ urS ≠ arj(uj ≠ 1) > 0

then
ArSxS + (arj ≠ d)xj Æ br ≠ duj (5)

is a valid constraint that dominates the original one in the sub-space of xj œ {uj ≠ 1, uj},
which is the only one that is relevant for this constraint under the above assumptions. The
modified constraint (5) is equivalent to the old one (4) because for xj = uj they are identical
and for xj Æ uj ≠ 1 the modified constraint is still redundant:

ArSxS + (arj ≠ d)(uj ≠ 1) Æ urS + (arj ≠ d)(uj ≠ 1) = br ≠ duj .

Constraint (5) dominates (4) for xj = uj ≠ 1 because for this value the constraints read
ArSxS Æ urS + d and ArSxS Æ urS , respectively.

Analogously, for arj < 0, lj > ≠Œ, and

≠arj Ø d

Õ := br ≠ urS ≠ arj(lj + 1) > 0

we can replace the constraint by

ArSxS + (arj + d

Õ)xj Æ br + d

Õ
lj

to obtain an equivalent model with a tighter LP relaxation.

Now, the important question is how to calculate the bounds

¸rS Æ ArSxS Æ urS

with reasonable computational e�ort, so that they are valid for all x œ PMIP and as tight as
possible. For single-row preprocessing we just use ¸rS = inf{ArSxS} and urS = sup{ArSxS}.
This is very cheap to calculate, but it may not be very tight.

The other extreme would be to actually calculate

¸rS = min{ArSxS : x œ PMIP} and
urS = max{ArSxS : x œ PMIP},

but this would usually be very expensive as it amounts to two MIP solves per inequality that
is considered, each with the original MIP’s constraint system. A light-weight alternative to
MIP solves is to only use the LP bound to calculate ¸rS and urS :

¸rS = min{ArSxS : x œ PLP} and
urS = max{ArSxS : x œ PLP}.

Still, even using just the LP bounds is usually too expensive to be practical.
A more reasonable compromise between computational complexity and tightness of the

bounds is to use a small number of constraints of the system over which we maximize and
minimize the linear form at hand. Again, this can be done using a MIP or an LP solve. If

－ 188 －

The Twenty-Sixth RAMP Symposium

we just use a single constraint, then the LP solve is particularly interesting since such LPs
can be solved in O(n) with n being the number of variables in the problem, see Dantzig [12]
and Balas and Zemel [6].

For structured problems it is often possible to calculate tight bounds for parts of the
constraint. We partition the support of the constraint into blocks

ArS1xS1 + . . . + ArSdxSd + arjxj Æ br

with S1 fi . . . fi Sd = N \ {j} and Sk1 fl Sk2 = ÿ for k1 ”= k2. Then we calculate individual
bounds

¸rSk Æ ArSkxSk Æ urSk

for the blocks k = 1, . . . , d and use

¸rS := ¸rS1 + . . . + ¸rSd and
urS := urS1 + . . . + urSd

to get bounds on ArS for the bound and coe�cient strengthening on variable xj . As before,
for calculating the individual bounds there is the trade-o� between complexity and tightness.
Often, we use the single-row approach

inf{ArSkxSk} Æ ArSkxSk Æ sup{ArSkxSk}
for most of the blocks and more complex algorithms for one or few of the blocks for which
the problem structure is particularly interesting.

A related well-known procedure is the so-called optimization based bound tightening

(OBBT), which has been first applied in the context of global optimization by Shectman
and Sahinidis [19]. Here, the “block” that we want to minimize and maximize consists of just
a single variable:

min{xj : x œ PMIP} Æ xj Æ max{xj : x œ PMIP}.

The result directly yields stronger bounds for xj . Again, instead of solving the full MIP one
can solve any relaxation of the problem, for example the LP relaxation or a problem that
consists of only a subset of the constraints. Since strong bounds for variables are highly
important in non-linear programming to get tighter relaxations, OBBT is usually applied
in MINLP and global optimization solvers very aggressively. In mixed integer programming
one needs to be more conservative to avoid presolving being too expensive. Thus, Gurobi
employs OBBT only for selected variables and only when the additional e�ort seems to be
worthwhile.

7. Clique merging

Cliques are particularly interesting and important sub-structures in mixed integer programs.
They often appear in MIPs to model “one out of n” decisions. The name “clique” refers
to a stable set relaxation of the MIP, which is defined on the so-called conflict graph, see
Atamtürk, Nemhauser and Savelsbergh [4]. This graph has a node for each binary variable

－ 189 －

The Twenty-Sixth RAMP Symposium

and its complement and an edge between two nodes if the two corresponding (possibly com-
plemented) binary variables cannot both take the value of 1 at the same time. Any feasible
MIP solution must correspond to a stable set in this conflict graph. Thus, any valid inequality
for the stable set polytope on the conflict graph is also valid for the MIP.

Many edges of the conflict graph can be directly read from the MIP formulation. In
particular, every set packing (set partitioning) constraint

ÿ

jœS

xj +
ÿ

jœT

(1 ≠ xj) Æ 1 (= 1)

with S, T ™ I, SflT = ÿ, ¸j = 0 and uj = 1 for all j œ SfiT , gives rise to |SfiT |·(|SfiT |≠1)/2
edges. Obviously, the corresponding nodes (i.e., variables) form a clique in the conflict graph.
Now, clique merging is the task of combining several set packing constraints into a single in-
equality.

Example 1. Given the three set packing constraints

x1+ x2 Æ 1
x1 + x3 Æ 1

x2 + x3 Æ 1

with binary variables x1, x2 and x3, we can merge them into

x1 + x2 + x3 Æ 1.

The clique merging process consists of two steps. First, we extend a given set packing
constraint by additional variables using the conflict graph. This means to search for a larger
clique in the graph that subsumes the clique formed by the set packing constraint, a proce-
dure that is also used to find clique cuts, see Johnson and Padberg [15] and Savelsbergh [18].
Subsequently, we discard constraints that are now dominated by the extended set packing
constraint. In the example above, we could extend x1 +x2 Æ 1 to x1 +x2 +x3 Æ 1, exploiting
the fact that neither (x1, x3) = (1, 1) nor (x2, x3) = (1, 1) can lead to a feasible MIP solution.
Then we would recognize that the two other constraints x1 + x3 Æ 1 and x2 + x3 Æ 1 are
dominated by the extended constraint.

Both the clique extension and the domination checks can be time consuming in practice,
in particular for set packing models with a large number of variables. For this reason, Gurobi
uses a work limit for the clique merging algorithm and aborts if it becomes too expensive.

8. Computational results

In this section we assess the performance impact of the various multi-row presolve reduc-
tions that have been discussed in this paper. Our benchmark runs have been conducted on
a 4-core Intel i7-3770K CPU running at 3.5 GHz with 32 GB RAM. As a reference we use
Gurobi 5.6.3 in default settings with a time limit of 10000 seconds. For each test the reference
solver is compared to a version in which certain presolve reductions have been disabled (or
non-default ones have been enabled), either through parameter settings or by modifying the

－ 190 －

The Twenty-Sixth RAMP Symposium

Table 1 Impact of disabling presolve

default no presolving a�ected
bracket models tilim tilim faster slower time nodes models time

all 2930 91 369 294 1166 1.58 1.94 2444 1.74
[0,10k] 2850 11 289 294 1166 1.60 2.00 2364 1.77
[1,10k] 1426 11 289 229 1071 2.55 2.41 1418 2.57
[10,10k] 1067 11 289 157 839 3.10 2.59 1061 3.12
[100,10k] 754 11 289 88 627 3.88 2.98 749 3.91
[1000,10k] 486 11 289 41 427 4.89 3.79 483 4.92

source code. The test set consists of 2974 problem instances from public and commercial
sources. It represents the subset of models of our mixed integer programming model library
that we have ever been able to solve within 10000 seconds using any of the Gurobi releases.

We present our results in a similar form as in [2]. Consider Table 1 as an example, which
shows the e�ect of turning o� root presolve completely by setting the Presolve parameter
to 0. In the table we group the test set into solve time brackets. The “all” bracket contains all
models of the test set, except those that have been excluded because the two solver versions
at hand produced inconsistent answers regarding the optimal objective value. This can hap-
pen due to the use of floating point arithmetics and resulting numerical issues in the solving
process. The “[n,10k]” brackets contain all models that were solved by at least one of the
two solvers within the time limit and for which the slower of the two used at least n seconds.
Thus, the more di�cult brackets are subsets of the easier ones. In the discussion below, we
will usually use the [10,10k] bracket, because this excludes the relatively uninteresting easy
models but is still large enough to draw meaningful conclusions.

Column “models” lists the number of models in each bracket of the test set. The “default
tilim” column shows the number of models for which Gurobi 5.6.3 in default settings hits the
time limit. The second “tilim” column contains the same information for the modified code.
As can be seen, a very large number of problem instances become unsolvable when presolve
is disabled: 80 models of the full test set cannot be solved by either of the two versions, 11
models can only be solved with presolving disabled, but enabling presolve is essential to solve
289 of the models within the time limit.

The columns “faster” and “slower” list the number of models that get at least 10% faster
or slower, respectively, when the modified version of the code is used. Column “time” shows
the shifted geometric mean of solve time ratios, using a shift of 1 second, see [1]. Values
larger than 1.0 mean that the modified version is slower than the reference solver. Similarly,
column “nodes” lists the shifted geometric mean ratio of the number of branch-and-bound
nodes required to solve the models, again using a shift of 1. Finally, the two “a�ected”
columns repeat the “models” and “time” statistics for the subset of models for which the
solving process was a�ected by the code change. As an approximate check for a model being
a�ected we compare the total number of simplex iterations used to solve a model and call

－ 191 －

The Twenty-Sixth RAMP Symposium

Table 2 Impact of disabling all of multi-row presolving

default disable multi-row presolving a�ected
bracket models tilim tilim faster slower time nodes models time

all 2954 91 128 384 606 1.10 1.05 1798 1.16
[0,10k] 2875 12 49 384 606 1.10 1.06 1719 1.17
[1,10k] 1334 12 49 367 573 1.22 1.12 1268 1.23
[10,10k] 901 12 49 254 433 1.31 1.12 867 1.33
[100,10k] 522 12 49 143 280 1.45 1.20 507 1.47
[1000,10k] 249 12 49 61 146 1.65 1.37 242 1.68

Table 3 Impact of enabling dependent row checking

default enable dependent row checking a�ected
bracket models tilim tilim faster slower time nodes models time

all 2964 91 97 227 261 1.02 1.02 1019 1.05
[0,10k] 2885 12 18 227 261 1.02 1.02 943 1.05
[1,10k] 1305 12 18 223 259 1.04 1.04 812 1.06
[10,10k] 874 12 18 184 210 1.05 1.06 601 1.08
[100,10k] 470 12 18 116 137 1.08 1.07 357 1.10
[1000,10k] 202 12 18 62 64 1.08 1.07 173 1.09

the model “a�ected” if this number di�ers for the two versions.
As can be seen in Table 1, presolving is certainly an essential component of MIP solvers.

The number of time-outs increases by 278, and the average solve time in the [10,10k] bracket
is more than tripled when presolving is turned o�. Note that Achterberg and Wunderling [2]
measure an even higher degradation factor, but this is because they also disabled node pre-
solve in their tests.

Table 2 shows the overall impact of the multi-row presolving methods that are described
in this paper. Even though the performance gain from multi-row presolve is only a small
fraction of the total speed-up obtained from presolving as a whole, it still contributes with
a significant improvement. In the [10,10k] bracket the average time to solve the problem
instances to optimality increases by 31% and the number of unsolved models increases by 37
if the multi-row presolving features are turned o�.

Tables 3 to 7 provide an analysis of the performance impact of the individual presolving
components that we discussed in this paper. Checking for redundancy using multiple rows
as described in Section 3 does not seem to be worth the e�ort for MIP solving. There are a
number of heuristic methods included in Gurobi to perform this task, but none of them is
enabled in default settings. A more systematic approach for finding redundant equations is
to use a rank revealing LU factorization [17]. For linear programs we use this algorithm to
discover and discard linear dependent equations. But even this method is disabled by default
for MIP as it hurts performance. Table 3 shows the impact when the rank revealing LU

－ 192 －

The Twenty-Sixth RAMP Symposium

Table 4 Impact of disabling parallel row detection

default no parallel row detection a�ected
bracket models tilim tilim faster slower time nodes models time

all 2960 91 95 303 363 1.01 0.99 1384 1.02
[0,10k] 2881 12 16 303 363 1.01 0.99 1305 1.02
[1,10k] 1307 12 16 296 352 1.02 0.99 1055 1.02
[10,10k] 871 12 16 237 287 1.02 0.98 744 1.02
[100,10k] 475 12 16 154 166 1.02 0.97 419 1.02
[1000,10k] 204 12 16 80 72 0.97 0.94 190 0.97

Table 5 Impact of disabling non-zero cancellation methods

default no non-zero cancellation a�ected
bracket models tilim tilim faster slower time nodes models time

all 2961 91 102 240 293 1.02 1.02 1189 1.04
[0,10k] 2882 12 23 240 293 1.02 1.02 1112 1.05
[1,10k] 1302 12 23 236 280 1.04 1.04 937 1.05
[10,10k] 872 12 23 197 229 1.05 1.03 680 1.06
[100,10k] 474 12 23 135 143 1.05 1.02 400 1.05
[1000,10k] 212 12 23 73 68 0.99 0.97 194 0.98

factorization is activated for our MIP test set. One can see a surprisingly large degradation
of 5% in the [10,10k] bracket, and this degradation does not come from the LU factorization
being such a large overhead. Instead, removing the dependent equations leads to larger search
trees. We conjecture that this degradation is caused by the cutting planes being less e�ective
when redundant equations are removed from the system, as the aggregation heuristics within
the cutting plane separation procedures may fail to reconstruct such an equation from the
remaining set of constraints.

Detecting parallel rows as described in Section 4 does have a positive e�ect on the MIP
solver performance, but this is pretty modest, see Table 4. Even though a number of models
get slower when the parallel row detection is disabled, the di�erence in the number of time-
outs is marginal. Moreover, the speed-up due to parallel row detection is only 2%. This is
in line with what we have observed for the multi-row redundancy checks of Section 3.

In contrast, the non-zero cancellation of Section 5 is improving Gurobi’s performance
significantly, as can be seen in Table 5. The speed-up in the [10,10k] bracket is 5%, and we
can solve an additional 11 models.

Table 6 illustrates the performance impact of the clique merging algorithm of Section 7.
It turns out that this method is very successful in reducing solve times and node counts. On
average in the [10,10k] bracket, the time to solve a model increases by 13% and the number
of nodes increases by 9% when clique merging is disabled.

An even more important multi-row presolve component is represented by the bound and

－ 193 －

The Twenty-Sixth RAMP Symposium

Table 6 Impact of disabling clique merging

default disable clique merging a�ected
bracket models tilim tilim faster slower time nodes models time

all 2965 91 108 263 347 1.04 1.04 1195 1.10
[0,10k] 2881 7 24 263 347 1.04 1.04 1114 1.11
[1,10k] 1304 7 24 253 336 1.09 1.08 971 1.12
[10,10k] 879 7 24 210 282 1.13 1.09 699 1.16
[100,10k] 477 7 24 135 175 1.16 1.13 405 1.19
[1000,10k] 213 7 24 66 91 1.26 1.24 197 1.28

－ 194 －

The Twenty-Sixth RAMP Symposium

Table 7 Impact of disabling bound and coe�cient strengthening

default disable domain and coe�cient strengthening a�ected
bracket models tilim tilim faster slower time nodes models time

all 2957 91 107 404 494 1.05 1.03 1661 1.09
[0,10k] 2877 11 27 404 494 1.05 1.03 1581 1.10
[1,10k] 1315 11 27 389 463 1.11 1.06 1211 1.13
[10,10k] 882 11 27 277 359 1.17 1.06 836 1.18
[100,10k] 500 11 27 164 222 1.23 1.12 480 1.24
[1000,10k] 226 11 27 84 102 1.17 1.06 219 1.17

coe�cient strengthening algorithms of Section 6. Disabling these methods yields a perfor-
mance degradation of 17%, see Table 7. Moreover, the number of unsolved problem instances
increases by 16.

9. Conclusion

In this paper, we reported on a subset of the preprocessing techniques included in the commer-
cial mixed-integer solver Gurobi, namely the so-called multi-row reductions, which consider
multiple rows at a time to find improvements to the model formulation.

Extensive computational tests over a test-set of about three thousand models show that
these multi-row presolving methods are successful in improving the performance of mixed
integer programming solvers. Most notably, clique merging and multi-row bound and coe�-
cient strengthening contribute a significant speed-up.

Nevertheless, multi-row presolving is just one particular aspect within the arsenal of MIP
presolving techniques as implemented in Gurobi. In total, multi-row presolve provides a
speed-up of 31%, which is certainly non-negligible. But on the other hand, disabling all of
presolve significantly increases the number of models that cannot be solved within the time
limit and degrades overall solver performance by more than a factor of 3.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin, 2007.
[2] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of progress. In

M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer
Berlin Heidelberg, 2013.

[3] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Mathematical Program-
ming, 71:221–245, 1995.

[4] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121(1):40–55, 2000.

[5] A. Atamtürk and M. W. P. Savelsbergh. Integer-programming software systems. Annals of Oper-
ations Research, 140:67–124, 2005.

[6] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Operations Research,
28(5):1130–1154, 1980.

[7] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mixed-integer programming: A
progress report. In M. Grötschel, editor, The Sharpest Cut: The Impact of Manfred Padberg and
His Work, MPS-SIAM Series on Optimization, chapter 18, pages 309–325. SIAM, 2004.

－ 195 －

The Twenty-Sixth RAMP Symposium

[8] R. E. Bixby and E. Rothberg. Progress in computational mixed integer programming—a look back
from the other side of the tipping point. Annals of Operations Research, 149:37–41, 2007.

[9] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems
prior to applying the simplex algorithm. Mathematical Programming, 8:54–83, 1975.

[10] S. F. Chang and S. T. McCormick. Implementation and computational results for the hierarchi-
cal algorithm for making sparse matrices sparser. ACM Transactions on Mathematical Software,
19(3):419–441, 1993.

[11] H. Crowder, E. L. Johnson, and M. Padberg. Solving Large-Scale Zero-One Linear Programming
Problems. Operations Research, 31(5):803–834, 1983.

[12] G. B. Dantzig. Discrete-Variable Extremum Problems. Operations Research, 5(2):266–277, 1957.
[13] M. Guignard and K. Spielberg. Logical reduction methods in zero-one programming: Minimal

preferred variables. Operations Research, 29(1):49–74, 1981.
[14] K. L. Ho�man and M. Padberg. Improving LP-Representations of Zero-One Linear Programs for

Branch-and-Cut. ORSA Journal on Computing, 3(2):121–134, 1991.
[15] E. L. Johnson and M. W. Padberg. Degree-two inequalities, clique facets, and biperfect graphs.

Annals of Discrete Mathematics, 16:169–187, 1982.
[16] E. L. Johnson and U. H. Suhl. Experiments in integer programming. Discrete Applied Mathematics,

2(1):39–55, 1980.
[17] L. Miranian and M. Gu. Strong rank revealing LU factorizations. Linear Algebra and its Applica-

tions, 367(0):1 – 16, 2003.
[18] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming prob-

lems. ORSA Journal on Computing, 6:445–454, 1994.
[19] J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable concave

programs. Journal of Global Optimization, 12:1–36, 1998.
[20] U. Suhl and R. Szymanski. Supernode processing of mixed-integer models. Computational Opti-

mization and Applications, 3(4):317–331, 1994.

－ 196 －

	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ
	空白ページ

