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Solving Mixed-Integer Quadratic Programming
problems with IBM-CPLEX: a progress report

Christian Bliek'*, Pierre Bonami?’, and Andrea Lodi*

Abstract Mixed-Integer Quadratic Programming problems have a vast impact in both theory
and practice of mathematical optimization. Classical algorithmic approaches, their implemen-
tation within IBM-CPLEX and new algorithmic advances will be discussed.
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1. Introduction

We consider the general Mixed-Integer Quadratic Programming (MIQP) problem

min  227Qx + T (1)
Ax =b (2)
xj €L j=1,...,p (3)
<z <u (4)

where Q™*" is a symmetric matrix. Note that constraints (4) are fundamental in the complex-
ity sense because a striking result by Jeroslow [11] proves the undecidability of unbounded
problems.

The relevance of MIQP in Mathematical Optimization is twofold. On the one side, a
number of applications arise in a practical setting starting from the most classical one in
portfolio optimization, see, e.g., [4, 7, 17]. On the other side, MIQP has been clearly the
first step for a methodological generalization of Mixed-Integer Linear Programming (MILP)
to general Mixed-Integer Nonlinear Programming (MINLP).

It is well known that MIQP is NP-hard, trivially because it contains MILP as a special
case. However, it is important to notice that, differently from MILP, the source of complexity
of MIQP is not restricted to the integrality requirement on (some of) the variables (3). In
fact, the (continuous) Quadratic Programming (QP) special case (i.e., p = 0) is, in general,
NP-hard as well. Let G = (V, E) be a graph and @ be the incidence matrix of G. The
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optimal value of
)1 =
min {QxTQx : ;Ij =1lx> 0}

is 1 (1 - ﬁ), where x(G) is the clique number of G [14], which is well-known to be NP-hard
to compute.

Therefore, we will distinguish between the case in which the relaxation obtained by drop-
ping the integrality requirements (3) (if any) is convex (thus, solvable in polynomial time),
and that in which it is nonconvex. Roughly speaking, convex MIQPs are currently solved
by heavily relying on MILP techniques by either replacing in the classical branch-and-bound
scheme the Linear Programming (LP) solver with a QP solver, or solving MILPs as subprob-
lems. Instead, nonconvex MIQPs require somehow more sophisticated techniques, namely
Global Optimization (GO). An intermediate case between these two is the one where @ is
not convex but MIQP can easily be reformulated as a convex MIQP. This is true for example
when all variables are constrained to be 0-1, or more generally when all products are between
a 0-1 variable and a bounded variable.

In this short paper we review the IBM-CPLEX evolution in solving QPs and MIQPs with
special emphasis on nonconvex MIQPs because the capability of solving them to proven op-
timality has been added into the solver very recently. Schematically, Table 1 below outlines a
brief history of MIQP within CPLEX, where B&B stands for branch and bound. We remind

the reader that a QP is convex if and only if the matrix () is positive semidefinite.

class D @  algorithm V. (Year)
convex QP 0 =0 Dbarrier 4.0 (1995)
- - - QP simplex 8.0 (2002)
convex MIQP >0 >0 B&B 8.0 (2002)
nonconvex QP 0 7 0 barrier (local) 12.3 (2011)
- - - spatial B&B (global) 12.6 (2013)
nonconvex MIQP >0 # 0 spatial B&B (global) 12.6 (2013)

Table 1 History of MIQP within CPLEX.

The paper is organized as follows. In Section 2 we briefly discuss the classical algorithms
for convex MIQPs and some specific implementation choices that are peculiar of CPLEX.
In Section 3 we move to the nonconvex MIQP case and we present the current status of
implementation of solution techniques for them. Both Sections 2 and 3 end with some com-
putational experiments giving a snapshot of the current performance of CPLEX on MIQPs.
Since the algorithmic treatment of 0-1 nonconvex MIQPs is more similar to that of convex
MIQPs than nonconvex MIQPs, we will review them as part of the section on convex MIQPs.

Finally, in Section 4 we draw some conclusions.
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2. Convex MIQPs

The solution of convex MINLPs has reached in the last decade a rather stable and mature
algorithmic technology, see, e.g., Bonami et al. [6]. Essentially, the two corner stones of
algorithms and software are Nonlinear Programming (NLP)-based branch-and-bound [10]
and Outer Approximation (OA) [8] algorithms. Although the NLP-based branch and bound
is the only relevant for CPLEX (see discussion at the end of the section) for the special
case of (convex) MIQPs, we review the OA as well. This is because the most standard
trick in MINLP is to add a variable o € R, replace the original objective function with
“mino” and add the constraint f(z) < a. Of course, this could be done for MIQPs as
well (f(z) = %JZTQ.’L’ + cT'z in that case), thus transforming the problem in a convex Mixed-
Integer Quadratically-Constrained Programming (MIQCP) problem and sometimes it does
make sense in practice [9].

The NLP-based branch and bound is a straightforward generalization of the main enu-
merative algorithm for MILP. The main difference is that an NLP, a QP in our special case,
is solved at every node of the branch-and-bound tree to provide a valid lower bound, in-
stead of an LP problem. The other main components of the MILP scheme remain the same:

branching on the integer constrained variables, and pruning nodes based on

« infeasibility: the node relaxation is infeasible,
e bound: the node lower bound value is not smaller than the incumbent solution value, and

« integer feasibility: the node relaxation admits an integer solution.

The main source of inefficiency of this straightforward extension is, in general convex MINLP,
the difficulty of warm starting NLP solvers, i.e., reusing the information on the solution of a
relaxation from a node to another. However, for the convex MIQP case this issue is relatively
under control when the QP simplex is used to solve the node relaxation.

The basic idea of the OA decomposition is to take first-order approximations of constraints
at different points and build an MILP equivalent to the initial MINLP. This corresponds for

a nonlinear function g(z) and for a set K of its points 7% k € K to write the constraints
9@+ Vg@") ' (x —7") <0. ke K (5)

This basic idea is illustrated in Figure 1.

It is easy to see that the MILP constructed through an initial set of linearization points is
a relaxation of the original convex MINLP. Then, if solved to optimality, it provides a valid
lower bound value for the original problem and a solution & such that £; € Z,5 = 1,...,p.
However, this solution might be NLP infeasible (because of the first-order approximation
used) and the NLP(Z) obtained by fixing the integer component of the original problem
(xj = 25,7 = 1,...,p) is solved. If NLP(Z) is feasible, then it in turn provides an upper
bound value. Otherwise, general-purpose NLP software will typically return a weighted min-

imization of the violation of the constraints. In both cases, a new point Z*/*! can be added
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Figure 1 The Outer Approximation MILP equivalent.

to the set K, and the method is iterated by applying first-order approximation to it, thus en-
hancing the quality of the MILP equivalent. Duran and Grossman [8] show that the iterative
scheme converges to the optimal solution value of the original problem in a finite number of
steps, provided the nonlinear functions are convex and continuously differentiable, and that
a constraint qualification holds for each point %, k € K.

The OA algorithm outlined above requires solving one MILP at each iteration. This can
be rather time consuming if the initial MILP does not provide a good approximation of the
original problem. However, the OA can be embedded in a single tree search [15, 6, 1]. Namely,
start solving the same initial MILP by branch and bound and at each integer feasible node:
(i) Solve NLP(%), and enrich the set of linearization points, (ii) Resolve the LP relaxation
of the node with the new fist-order constraints, and (iii) Repeat as long as node is integer
feasible. Of course, no pruning is allowed by integer feasibility.

Due to the efficiency of its dual QP simplex algorithm, CPLEX does not implement an
OA algorithm for MIQP but it does have one for the case of problems with also convex
quadratic constraints, MIQCPs. The details of this implementation are beyond our scope

here and we do not discuss OA further.

2.1. 0-1 Nonconvex QPs

Here, we review the treatment of the subclass of nonconvex MIQPs that CPLEX can easily
turn into convex MIQPs. The most relevant case is nonconvex QPs with only binary variables
and we will first restrict our discussion to it. Precisely, we discuss two different approaches
to solve nonconvex MIQPs when all variables are binary.

The first one, used in older versions of CPLEX, consists of transforming a nonconvex
binary MIQP into an equivalent convex MIQP. To do this one uses the fact that when a
variable x is binary « = 27 ITz. The quadratic part of the objective 7 Qz may therefore be
changed in 27(Q + pI)x — px. Thus, by determining a value of p > 0 that makes Q + pI
positive semidefinite, the nonconvex MIQP is transformed into a convex MIQP that CPLEX
can readily solve. A simple choice for the value of p is to take the absolute value of the
smallest (negative) Eigenvalue of ). Many more elaborated schemes have been proposed and
have been shown to be effective (see, e.g., [5]).
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The second approach, which is used in more recent CPLEX versions, is to turn a bi-
nary nonconvex MIQP into an equivalent MILP. By the argument used above, the quadratic
terms q“x? may be replaced by linear ones g;;z;. For the bilinear terms g;;x;7;, a new variable
yi; > 0 is introduced together with the inequalities x; + x; — 1 < ;5 if ¢;; > 0, or y;; < x;
and y;; < x; if ¢;; < 0.

In general and in theory none of these two approaches dominates the other but an ex-
tended internal testing has shown a significant advantage, on average, for the latter (see
Section 2.2) and therefore it is the default in the 12.6 version(s) of CPLEX.

Note that this latter approach is actually more general and can also be applied when only
one of the two variables in the bi-linear term is binary while the other one has finite bounds.
Finally, the linearization approach is beneficial for convex MIQPs as well, since if everything

can be linearized the problem may be solved directly using MILP techniques.

2.2.
To conclude this section, we present in Table 2 the results of a simple experiment compar-

A Computational Snapshot

ing the number of problems solved and the running time of various versions of CPLEX. We
compare major releases since the first version able to solve MIQPs. The test set is CPLEX
internal test of MIQP models. It is composed both of convex MIQPs and of binary MIQPs
that can be convexified. All runs where executed on a cluster of identical 12 core Intel
Xeon CPU E5430 machines running at 2.66 GHz and equipped with 24 GB of memory, so
that hardware speed up is not included in the numbers. Table 2 reports the results on 193

8.0 9.0 10.0 11.0 12.1 12.5 12.6
Group # inst. | t.o. | t.o. speed t.o. speed t.o. speed t.0. speed t.o0. speed t.o. speed
up up up up up up
solved 193 50| 49 1.01] 50 1.03| 48 1.30| 48 1.34| 39 1.69 1 5.88
> 1 sec. 104| 50| 49 1.01| 50 1.05| 48 1.64| 48 1.71| 39 2.66 1 27.16
> 10 sec. 89| 50| 49 1.02| 50 1.03| 48 1.67| 48 1.72| 39 2.76 1 42.94
> 100 sec. 721 50| 49 1.03] 50 1.05| 48 1.52| 48 1.55| 39 2.60 1 79.09
> 1,000 sec. 60| 50| 49 1.07| 50 1.06| 48 1.39| 48 1.41| 39 2.,57 1 124.02

Table 2 Comparison of results with different CPLEX versions on convex MIQP.

instances, column “t.0.” indicates the number of instances where the time limit of 10,000
CPU seconds has been reached and the speed up is computed with respect to CPLEX 8.0.
In addition, the 193 instances are also split into classes depending on the computing time
needed: the first row shows results for all instances that were solved by at least one solver in
the time limit; the subsequent rows show the results for all instances where the slowest solver
took more than the prescribed computing time. The results clearly show the continuous im-
provement within CPLEX evolution and especially CPLEX version 12.6 shows an impressive

improvement mainly due to the automatic linearization discussed in Section 2.1.

3. General Nonconvex QPs and MIQPs

As indicated by Table 1, solving general nonconvex QPs and MIQPs in CPLEX is a relatively
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recent possibility. Namely, a local solver for nonconvex QPs has been available since version
12.3 (2011) and it is a Primal-Dual Interior Point algorithm. Indeed, interior point algo-
rithms that are exact for convex QPs can naturally be extended to provide locally optimal
solutions for the nonconvex case. This is the approach of Ipopt [20], which is however much
more general because it solves general NLP problems. Thus, a number of additional steps
like feasibility restoration, second order correction, filter, etc. are not needed. As a technical
note, observe that the local QP solution is not computed by default. In fact, if @) is indef-
inite (% 0) CPLEX returns a (kind of) error message, namely, CPXERR_Q_NOT_POS_DEF, to
alert the user. The computation of the local solution is then activated by setting the option
solution target to 2 (or CPX_SOLUTIONTARGET_FIRSTORDER).

Concerning solving nonconvex QPs and MIQPs to global optimality this is pos-
sible in CPLEX since version 12.6 (2013) by setting solution target to 3 (or
CPX_SOLUTIONTARGET OPTIMALGLOBAL). For solving general QPs and MIQPs, i.e., those that
do not show a special structure to be exploited, CPLEX relies on GO methods and, in partic-
ular, on the so-called Spatial branch-and-bound algorithm (see, e.g., [2]). Roughly speaking,
the Spatial branch and bound establishes a convex (easily solvable) relaxation of the initial
QP (either the problem itself or its continuous relaxation), and performs branching on so-
lutions of this relaxation with the twofold aim of partitioning the search space (as usual)
and improving the convex relaxation as much as possible. An example of elementary convex
relaxation applied to the simple nonconvex constraint y < x? depicted in Figure 2 is shown

in Figure 3. Essentially, the general idea is to replace each nonconvex “piece” with a convex

X1 = WU

{y < x2}

X

x12 < yﬂ =(h+uw)x1—hwy
Figure 2 A nonconvex quadratic constraint.
Figure 3 Elementary convex relaxation of a

quadratic constraint: the secant approach.

relaxation of it, so as to produce an overall convex relaxation of the original problem that is
solvable to global optimality, thus providing a valid lower bound. Of course, more complex
relaxations than the one of Figure 3 can be used, thus providing a tighter approximation, an
example being the convex hull relaxation of a single product, say x129, given by the so-called
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McCormick inequalities [13], which is of fundamental relevance for QPs

(6)

_ U] + ULT2 — ULUD
T1T2 2 Yo 1= MAX
lgl‘l + lll'g — lllg

U1 + llIQ — llu2} (7)

T1X9 S + ‘= min
Y2 { lgl'l + uU1xo — U1l2
CPLEX uses two different ways of constructing the initial convex relaxation of a QP.

(Q-space reformulation and relaxation.

Let Q = P + (), with P being the diagonal positive semidefinite matrix containing ¢;; > 0.
Add one y;; = x;x; variable for each non-zero entry g;; of Q. Relax Yij = x;x; by using
McCormick (6)-(7) and Secant approximations, so as to obtain the system

min 127 Pz + 3(Q,Y) + Tz (8)
Az =1b (9)

rj €7 j=1,...,p (10)

v < i < v (11)

Yii < Uy (12)

[<z<u (13)

where (Q,Y) = 32, ; Gijyij-

Factorized Eigenvector space reformulation and relaxation.

Use a decomposition to get 2 = Lz and 2 Dz = 27Qx and do the same steps as before (but
simpler). Namely, let D = DT — D~ with D¥ diagonal positive semidefinite matrices. Add
one y;; < 22 variable for each non-zero entry of D~. Infer finite bounds, [*, u® for z and relax

yi; < 22 by using Secant approximation, so as to obtain the system

min 227DV z — Y0 iy, 4Ty (14)
Ar =0b,Lr =z (15)

xj €L ji=1,...,p (16)

Yii < Uiy (17)
[<ax<u,l*<z<u? (18)

In CPLEX, we first use a block indefinite decomposition @ = M?BM where M and B
are such that M is 2-block triangular and B is 2-block diagonal, see Figure 4, and then B is
diagonalized.

The two reformulations/relaxations are in general incomparable, while if @ is diagonal
they are identical. If @) > 0, the Eigenvector reformulation is preferable because it pre-
serves convexity. For this reason, CPLEX uses it if the problem at hand looks “almost”

convex. Nevertheless, the )-space reformulation provides surprising tight bounds as shown
by Luedtke, Namazifar, and Linderoth [12].

— 177 —



The Twenty-Sixth RAMP Symposium

Figure 4 () factorization in CPLEX.

Once the chosen QP relaxation has been solved integrality must still be enforced. But,
as shown in the previous paragraphs, the integrality requirements (3) are not the only ones
that have been relaxed. Let (Z,7) be the solution of the chosen QP relaxation (after pre-
solve/cutting) and assume x; € Z, j = 1,...,p, i.e., standard branching on the integer
components has already been executed. If there exists y;; # T;T;, then (Z,7) is not a so-
lution of the problem and we need to branch. This is the so-called spatial branching that
consists in picking an index i (of a continuous variable z;), choosing a value 6 between l—z%
and T;, branching by changing the bound to # and updating all Secant and McCormick ap-
proximations involving this bound. This is depicted in Figure 5 for the Secant approximation.
It is easy to see that the effect of the spatial branching is on tightening the convex relaxation,

Figure 5 Spatial branching on the secant approximation.

thus leading in general to better bounds. The reader is referred to Belotti et al. [3] for more
details on branching in GO.

Of course, the initial convex relaxation and the branching step are not the only funda-
mental components of an MIQP solver, in general, and of CPLEX, in particular. A crucial
component of an efficient GO algorithm is, in particular, bound tightening. Many methods
have been developed in the literature, and the reader is referred to Tawamalani and Sahinidis
[16] Belotti et al. [3] and Vigerske [19] for recent reviews. In CPLEX, we mainly rely on
applying bound strengthening on the KKT system to produce tighter bounds at each node
(see, e.g., [18]). This is done by exploiting the fact that when all integer variables are fixed,
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in an optimal solution the continuous variables need to satisfy the KKT system.

3.1. A Computational Snapshot for Nonconvex MIQPs
Because there is only one version of CPLEX that can solve general nonconvex MIQPs, we
cannot present much as an illustration of the progress of CPLEX in solving this type of
problems. In the development of the new solver, we compared the solution provided by those
of the two academic solvers Couenne [3] and SCIP [19] and we believe that the algorithm of
CPLEX compares well to those both in speed and reliability.

To illustrate here the performance of the solver we just present the results of a computa-
tion using different numbers of threads. Indeed, a distinctive feature of CPLEX compared to
other GO solvers that can solve MIQPs is its ability to fully exploit modern machines with
several processors. To illustrate CPLEX effectiveness, in Table 3 we show solution times on
the same machine using 1 and 4 threads. The information in Table 3 is the same as in Table
2 with the addition of the ratio between the nodes explored with 1 thread and 4 threads.
The table clearly shows the advantage of exploiting multiple threads. CPLEX using 4 thread

1 thread 4 threads

. . . d
Group 4 inst. #time | #time spee n0(.1e
outs outs up ratio
solved 296 4 0 1.19 1.05
> 1 sec. 107 4 0 158 1.03
> 10 sec. 60 4 0 1.82 0.9
> 100 sec. 33 4 0 2.09 1.02

Table 3 Comparison of results of CPLEX 12.6 global solver with 1 thread vs. 4 threads.

is able to solve 4 instances that are not solved using 1 thread only. The number of nodes

explored with the two settings is similar.

4. Conclusions

We have briefly reviewed the main algorithmic components for solving convex and nonconvex
MIQPs with special emphasis to the way IBM-CPLEX implements them. A snapshot of the
computational performance of CPLEX on both classes has been reported by emphasizing the
version-to-version evolution of the solver in the convex case and its scalability in terms of

number of threads in the nonconvex one.
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