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Abstract

We show that the problem of maximizing a sum of linear functions and weighted

logarithmic determinants with linear positive semidefinite matrix constraints has some

interesting applications in machine learning. We extend the primal-dual interior-point

path-following algorithm to the problem. Polynomial-time complexity of the algorithm

is also presented.
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1 Introduction

Denote the vector space of real m × m symmetric matrices as Sm. Since the cone of
positive semidefinite matrices induces a partial order, for X ∈ Sm, we use X � 0 (≻ 0) to
represent that X is positive semidefinite (positive definite). Let A • B denote the standard
inner product on Sm:

A •B = trAB =
∑

1≤i,j≤m

AijBij .

We use DetX to represent the determinant of a matrix X. The nature logarithmic function
is denoted by ln(·).

Our variables are n symmetric matrices with dimensions N1, . . . , Nn > 0. Let LD denote
a subset of the index set {1, . . . , n}.

We consider the following determinant maximization problem with linear positive semidef-
inite matrix constraints (maxdet-problem).

minXi∈S
Ni

∑n
i=1Ci •Xi −

∑

j∈LD ĉj ln DetXj

s.t.
∑n

i=1Aki •Xi = bk (k = 1, . . . , m) ,
Xi � 0 (i /∈ LD) , Xi ≻ 0 (i ∈ LD) .

(1)

Here, Ci, Aki ∈ SNi , ĉj > 0, b = (b1, . . . , bm)T are given data. Problem (1) is a convex
program. Since the derivative of (ln DetX) is X−1, it is easy to see that the dual to (1) is

max
y∈Rm,Zi∈S

Ni bTy +
∑

j∈LD ĉj ln DetZj +
∑

j∈LD ĉjNj ln ĉj
s.t.

∑m
k=1 ykAki + Zi = Ci (i = 1, . . . , n) ,

Zi � 0 (i /∈ LD) , Zi ≻ 0 (i ∈ LD) .
(2)



Maxdet-problem is an extension of the semidefinite programming (SDP) problem [1].
It includes the analytic centering problem as well. Vandenberghe et. al in [11] give many
applications of the maxdet-problem in computational geometry, statistics, information and
communication theory, etc. In [11], an interior-point algorithm for the maxdet-problem
based on self-concordant barrier [7] is given with numerical examples. Toh presents a more
general algorithmic framework based on a symmetrized Newton equation for this problem
in [9], which includes the search direction of [11]. Toh shows that the algorithms are efficient,
robust and accurate through numerical results.

In this paper, we first show some applications of the maxdet-problem in machine learning,
then introduce a primal-dual path-following interior-point algorithm for the maxdet-problem
based on symmetrized Newton equations.

The rest of the paper is organized as follows. In § 2, we give some applications the
maxdet-problem in machine learning. In § 3, we introduce our primal-dual interior point
path-following algorithm for the maxdet-problem. Finally, in § 4, we summarize complexity
results of our algorithm.

2 Applications in Machine Learning

In this part, we give some applications of the maxdet-problem in machine learning.
There is a system with input x and output y. A training set of n data items (xi,yi), (i =

1, . . . , n) is given. The task is to predict output y for new input x. The prediction rule is
often described by some model. And the parameters of the model can be estimated by the
training data.

Maximum likelihood estimation is a principle for estimation. It assumes that the most
reasonable values of the parameters are those for which the probability of the cases repre-
sented by the training data is the largest.

2.1 Density Estimation

Let x1, . . . ,xn ∈ R
p be a random sample of independent identically-distributed (i.i.d.) ob-

servation from a probability density f(x). Suppose f is multivariate Gaussian with mean µ

covariance Σ:

f(x) =
1

(2π)p/2(det Σ)1/2
exp

[

−1

2
(x− µ)T Σ−1(x− µ)

]

.

The task is to estimate µ and Σ based on the data. The log-probability of the sample is

L(µ,Σ) = −np
2

ln(2π)− n

2
ln det Σ− 1

2

n
∑

i=1

(xi − µ)T Σ−1(xi − µ)

Define the empirical mean and empirical covariance:

µ̄ =
1

n

n
∑

i=1

xi, Σ̄ =
1

n

n
∑

i=1

(xi − µ̄)(xi − µ̄)T .

Then the log-probability can be represented as

L(µ,Σ) = −n
2

[

p ln(2π) + ln det Σ + tr(Σ−1Σ̄) + (µ− µ̄)T Σ−1(µ− µ̄)
]

.



The mean can be estimated by µ̂ = µ̄ to maximize L(µ,Σ).
The likelihood equations for the positive definte covariance matrix Σ is

Σ−1 = Σ−1Σ̄Σ−1 .

When n ≥ p+ 1, Σ̄ is positive definite with probability one.
When n < p+ 1, or there is some prior information of the structure of Σ, to estimate Σ,

some linear constraints may be imposed on Σ. For instance, set some entries zero, or add
bounds on some variances Σii ≤ a, which can be represented as

(

Σ−1 ei

eT
i a

)

� 0 .

Let M
def
= Σ−1. Then the maximum likelihood estimation of the density function f can

be represented as a maxdet-problem. See [11].

max − tr(MΣ̄) + ln detM
s.t. M ∈ V

M ≻ 0 ,

where V is the feasible set represented by the linear constraints.
The density estimation problem can also be modeled as a maxdet-problem if the data is

one-dimentional and the density model is assumed to be

f(x;α, β) = p(x;α)K(x; β) ,

where p(x;α) is a polynomial in x with parameter α and K(x; β) is a density function of x
with parameter β; see [3].

2.2 Classification

If the output y of the system are descriptive labels (also referred to as classes, categories),
the prediction task is called classification.

Bayes classifier is a solution to classification. The rule is to categorize the data to the
most probable class based on the conditional (discrete) distribution Pr(y|x).

Denote the possible classes as {1, . . . , q}. Let gk(x) be the calss-conditional density of x

in class y = k. Let πk denote the prior probability of class k, such that
∑q

k=1 πk = 1.
By Bayes theorem,

Pr (y = k|x = x̃) =
gk(x̃)πk

∑q
i=1 gi(x̃)πi

.

Suppose the density of each class is multivariate Gaussian. The quadratic discriminant
function (QDA) for class k is

fk(x) = −1

2
ln det Σk −

1

2
(x− µk)

T Σ−1
k (x− µk) + ln πk .

The decision boundary between classes k and l is

{x : gk(x) = gl(x)} .

See [5].



Let nk be the number of observations y = k in the training set. Using maximum likelihood
estimation,

π̂k =
nk

n
.

And, QDA can be obtained by the technique described in the density estimation part.

2.3 Entrophy Approximation

The differential entropy [8] of a random variable x with density g(x) is defined as

H(x) = −
∫

g(x) ln g(x)dx ,

which is a measure of uncertainty of the probability density. Entropies are usually difficult
to calculate. The differential entropy of a multivariate Gaussian distribution is

Hl(x) =
1

2
[p+ p ln(2π) + ln det Σ] .

As is discussed before, Hl with some additional constraints can be formulated as a maxdet-
problem. It is known that Gaussian density has the maximum entropy among all density
functions with the same covariance. So we can obtain an upper bound of the entropy of a
density distribution. In some algorithm for entropy calculation, the density is assumed to
be near Gaussian and approximated by Hl.

3 The Path-Following Algorithm

Because the coefficients for the determinants are fixed, some properties of SDP that are
essential to its convergence analysis are no longer valid for the maxdet-problem. For instance,
the primal and dual search directions are not necessarily orthogonal in the neighborhood of
the central path defined in [9]. To overcome this difficulty, we introduce the biased center.
We also develop the adaptive set strategy to deal with the cases when the coefficients of the
determinants are smaller than the central path parameter. See [10] for details.

We describe the central path of the maxdet problem in §§3.1, derive the Newton system
on the central path in §§3.2, define the neighborhood of the central path, and finally present
the interior-point path-following algorithm for the maxdet problem in §§3.3.

3.1 The Central Path

To describe the interior-point path-following algorithm for the maxdet-problem, we first
deduce the central path for (1)-(2).

It is not hard to see that there is no duality gap between (1) and (2) iff the following
conditions are satisfied: i) (X,y, Z) are feasible; and ii)

Xi • Zi = 0 (i /∈ LD) , XiZi = ĉiI (i ∈ LD) .

Applying the logarithmic barrier functions to the primal and dual problems (1)-(2), we come
to the following parameterized primal-dual pair:



minXi∈S
Ni

∑n
i=1Ci •Xi −

∑

j∈LD ĉj lnDetXj − µ
∑

j /∈LD ln DetXj

s.t.
∑n

i=1Aki •Xi = bk (k = 1, . . . , m) ,
Xi ≻ 0 (i = 1, . . . , n) .

(3)

max y∈R
m

Zi∈S
Ni

bTy +
∑

j∈LD ĉj ln DetZj +
∑

j∈LD ĉjNj + µ
∑

j /∈LD ln DetZj

s.t.
∑m

k=1 ykAki + Zi = Ci (i = 1, . . . , n) ,
Zi ≻ 0 (i = 1, . . . , n) .

(4)

Let N
def
=
∑n

i=1Ni. Define the operator A : SN1 × · · · × SNn → R
m as

(AX)i =
n
∑

j=1

Aij •Xj , (i = 1, . . . , m) .

Denote the adjoint of A by A∗. Define the block diagonal matrices X = Diag(Xi), Z =
Diag(Zi) and C = Diag(Ci). Then (Xµ,yµ, Zµ) is a solution to (3)-(4) iff it satisfies the
primal-dual feasibility constraints as well as the centering condition, i.e., the system of
equations below.

AX = b (5)

A∗y + Z = C (6)

Xµ
i Z

µ
i = µI (i /∈ LD) , XiZi = ĉiI (i ∈ LD) . (7)

The feasible constraints (5)-(6) imply that

C •X =
n
∑

i=1

(

m
∑

k=1

ykAki + Zi

)

•Xi .

Therefore,

C •Xµ − bTyµ = Xµ • Zµ = µ
∑

i/∈LD

Ni +
∑

i∈LD

ĉiNi . (8)

Let δ(·|LD) denote the function

δ(i|LD) =

{

1 i ∈ LD ,

0 i /∈ LD .

For any a ∈ R, we define νi(a) = δ(i|LD)ĉi + [1− δ(i|LD)]a, i.e.,

νi(a) =

{

ĉi i ∈ LD ,

a i /∈ LD .

For a block diagonal matrix M = Diag(Mi), we define

ν(a)M
def
= Diag [νi(a)Mi] .

Next, we give existence and uniqueness of the optimal solution to the parameterized
maxdet-problem. Our proof is an extension of [6, Theorem 2.1, 2.4].



Lemma 1 Suppose that the primal-dual maxdet-problem (1)-(2) has an interior feasible so-
lution. Then for all µ > 0, the perturbed problem (3)-(4) has a unique solution.

Proof: We first prove existence. Suppose (X0,y0, Z0) is an interior feasible solution to
(1)-(2). Since (X0,y0, Z0) is feasible, using the same argument as that for (8), we get that
the solution set to (3) are the minimizers of Z0 •X−∑n

i=1 νi(µ) lnDetX0
i over the following

set

L
def
= {X ≻ 0: AX = b, Z0 •X −

n
∑

i=1

νi(µ) lnDetXi ≤ Z0 •X0 −
n
∑

i=1

νi(µ) lnDetX0
i .}

Next we give bounds on λ(X).

Z0 •X0 −
n
∑

i=1

νi(µ) lnDetX0
i ≥ λmin(Z

0)I •X −
n
∑

i=1

νi(µ) lnDetXi

=
n
∑

i=1

Ni
∑

j=1

[

λmin(Z
0)λj(Xi)− νi(µ) lnλj(Xi)

]

.

The last term is a sum of the functions ψ(λ) in the form ψ(λ) = uλ−v lnλ. Note that for all
u, v > 0, ψ(λ) is strictly convex, tends to +∞ as λ tends to 0 or +∞. The inequality above
shows that the last term is bounded from above; hence each eigenvalue of X is bounded.
Therefore, L is a subset of a compact set of positive definite matrices. Since L is defined by
linear equations and an inequality on a function that is continuous on such sets, L is compact,
and Z0 •X−∑n

i=1 νi(µ) lnDetXi is continuous on it. Therefore, (3) has an optimal solution
Xµ. The existence of an optimal solution to (4) follows from the equations (6)-(7).

Next, we show the uniqueness. The uniqueness of Xµ and Zµ follows from the strict
convexity of the objective functions of (3)-(4). From (6) and the assumption that the null
space of A∗ is {0}, we get the uniqueness of y0.

Next, we consider the optimal set of the maxdet-problem.

Lemma 2 Suppose that (1)-(2) has an interior feasible solution. Then both (1) and (2)
have nonempty and bounded optimal solution sets.

Proof: Assume (X0,y0, Z0) is an interior feasible solution to (1)-(2). As the arguments in
the preceding lemma, the optima set is not changed if we replace the objective function of
(1) by Z0 • X −∑i∈LD ĉi lnDetXi and add the constraint Z0 • X −∑i∈LD ĉi ln DetXi ≤
Z0 •X0 −∑i∈LD ĉi ln DetX0

i . Consider the inequality below.

Z0 •X0 −
∑

i∈LD

ĉi ln DetX0
i ≥ λmin(Z

0)I •X −
∑

i∈LD

ĉi ln DetXi

=
∑

i∈LD

Ni
∑

j=1

[

λmin(Z
0)λj(Xi)− ĉi lnλj(Xi)

]

+
∑

i/∈LD

Ni
∑

j=1

λmin(Z
0)λj(Xi) .

The right-hand-side of the last equality tends to +∞ as λj(Xi) tends to +∞ for all i =
1, . . . , n and j = 1, . . .Ni. Hence all optimal solutions of (1) lie in a compact set. Since
Z0X −∑i∈LD ĉi ln DetXi is continuous over this compact set, we conclude that the set of



optimal solutions to (1) is nonempty and bounded. Similarly, the set of optimal solutions to
(2) is nonempty and bounded.

Assume both (1) and (2) have a strictly feasible solution (X0,y0, Z0), i.e., X0 ≻ 0, Z0 ≻
0, and (X0,y0, Z0) satisfies the feasibility constraints (5)-(6), also suppose that the null space
of A∗ is {0}; then (Xµ,yµ, Zµ) converges to an optimal solution to the maxdet-problem (see
[4]).

3.2 The Newton System

In this part, we derive the Newton system for the symmetric central path conditions and
give its solution. To simplify notations, we use symmetric Kronecker product [2].

Let nvec denote the mapping from R
n×n to R

n2
:

nvec(K) = [K11, K12, . . . , K1n, K21, . . . , K2n, . . . , Knn]
T .

Let svec represent the mapping from Sn to R
n(n+1)

2 :

svec(K) =
[

K11,
√

2K12, . . . ,
√

2K1n, K22, . . . ,
√

2K2n, . . . , Knn

]T

.

We use M ⊗N to represent the Kronecker product of matrices M and N . For M,N ∈ R
n×n,

the symmetric product M ⊛N is defined as a linear operator on Sn:

(M ⊛N) svec(K) = svec

[

1

2
(NKMT +MKNT )

]

.

For Pi ∈ R
Ni×Ni nonsingular, let HPi

denote the linear transformations on the ith block:

HPi
(M)

def
=

1

2

[

PiMP−1
i + P−T

i MTP T
i

]

, i.e.,

nvec [HPi
(M)] =

1

2

(

P−T
i ⊗ Pi

)

nvec(M) +
1

2

(

Pi ⊗ P−T
i

)

nvec(MT ) .

Denote P = Diag(Pi) (i = 1, . . . , n). Correspondingly, we use HP to represent the direct
product of HPi

.
The Newton’s method applied to the central path conditions results in

A∆X =b−AX
A∗∆y + ∆Z =C −A∗y − Z

X∆Z + Z∆X =(ν(µ)I −XZ) .

(9)

Because XZ is not symmetric in general, the domain and range of the function defined by
the right hand side of (9) are not the same. Therefore, Newton’s method is not directly
applicable.

We then apply HP to symmetrize the centering condition

A∆X =rp
def
= b−AX (10a)

A∗∆y + ∆Z =Rd
def
= C −A∗y− Z (10b)

HP (X∆Z + Z∆X) =Rc
def
= ν(µ)I −HP (XZ) . (10c)



Equations (10c) can also be represented as

(

PZ ⊛ P−T
)

svec ∆X +
(

PX ⊛ P−T
)

svec ∆Z = svec (ν(µ)I)− PX ⊛ P−T svec(Z) . (11)

Define the linear operator E , F : SN1 × · · · × SNn → SN1 × · · · × SNn as the direct products
of Ei and Fi:

Ei(M) =
1

2

(

PiMZiP
−1
i + P−T

i ZiMP T
i

)

, Fi(M) =
1

2

(

PiXiMP−1
i + P−T

i MXiP
T
i

)

.

Assume E−1F is positive definite and A·,i’s are linearly independent. Then the unique
solution to (10) is

∆y =
(

AE−1FA∗
)−1 [

rp −AE−1 (Rc − FRd)
]

∆Z = Rd −A∗∆y

∆X = E−1(Rc − F∆Z) .

In the following, we call P a commutative scaling matrix if PXP T and P−TZP−1 commute.
E−1F is positive definite if P in (10) is a commutative scaling matrix. Therefore the search
direction is well-defined for any interior feasible solution if P is a commutative scaling matrix
in (10) (see [9, Proposition 3.1]).

3.3 The Neighborhoods of the Central Path and the Algorithm

In this part, we define our biased neighborhoods of the central path and then describe our
adaptive-set path-following interior-point algorithm for the maxdet problem. Our algorithm
framework includes the long-step, short-step, and Mizuno-Todd-Ye type predictor-corrector
methods. Our methods require the scaling matrix to be commutative; the NT, the primal
and the dual HRVW/KSH/M directions are in this family.

For X,Z ≻ 0, we define

µ(X,Z)
def
=

1
∑

i/∈LDNi

(

X • Z −
∑

i∈LD

ĉiNi

)

.

Similarly, we denote ν(X,Z)I = Diag [νi(X,Z)I] with

νi(X,Z)I =

{

ĉiI i ∈ LD ,

µ(X,Z) i /∈ LD .

Note that our definition of µ(X,Z) is different from that in [9]; however, the values are the
same when X and Z satisfy the centering condition (7).

The biased neighborhoods. In the complexity analysis for SDP, iterates are restricted
to a neighborhood of the central path. The distance of the iterate from the central path is
usually measured by the Frobenius norm, the infinity norm, or the semi-infinity norm. The
semi-infinity norm ‖M‖−∞ is defined to be the negative of the smallest eigenvalue of M .
This measurement is called semi-infinity norm, although it is not a semi-norm at all. The
neighborhood associated with the Frobenius norm is the narrowest and that associated with



the semi-infinity norm is the widest. Note that when X � 0, X1/2ZX1/2 and XZ are similar.
Since the former is a symmetric matrix, all its eigenvalues are real. It follows that all the
eigenvalues of XZ are real. We define the narrow and wide neighborhoods with respect to
given constants γ and µ below.

NF (γ)(µ)
def
= {(X,y, Z) : X ≻ 0, Z ≻ 0, AX = b, A∗y + Z = C,

∥

∥X1/2ZX1/2 − ν(µ)
∥

∥

F
≤ γµ .}

N−∞(γ)(µ)
def
= {(X,y, Z) : X ≻ 0, Z ≻ 0, AX = b, A∗y + Z = C,

max
1≤i≤n

[

νi(µ)− λmin(X
1/2
i ZiX

1/2
i )
]

≤ γµ .}

Note that max1≤i≤n

[

νi(µ)− λmin(X
1/2
i ZiX

1/2
i )
]

≤ γµ is equivalent to: for all i = 1, . . . , n,

λmin(XiZi) ≥ νi(µ)− γµ.

It is easy to see that max1≤i≤n

[

νi(µ)− λmin(X
1/2
i ZiX

1/2
i )
]

≤
∥

∥X1/2ZX1/2 − ν(µ)
∥

∥

F
. Hence

the name wide and narrow neighborhoods.

Next, we describe our algorithm for the max-det problem.

The adaptive-set path-following algorithm. Given an initial feasible interior point
(X0,y0, Z0) and accuracy threshold ǫ > 0, our algorithm finds an ǫ-optimal solution (X̃, ỹ, Z̃)
in the sense that µ(X̃, Z̃) ≤ ǫ, AX̃ = b, A∗ỹ + Z̃ = 0.

Initialization Set d = 0. Choose LDd and µ0 so that LDd = {i : i ∈ LD, ĉi > µ0},
µ0 = 1

P

i/∈LDd

(

X0 • Z0 −∑i∈LDd ĉiNi

)

1

Outer-loop 1. While LD 6= LDd, do the following.

(a) Set c̃d = max(ĉi ∈ LD: i /∈ LDd).

(b) Inner-loop Apply the long-step, or short-step, or predictor-corrector method
for the max-det problem, which is described below, with the determinant set
being LDd, to reduce µ(X,Z) to c̃d.

(c) Update LDd ←− LDd ∪{i : ĉi = c̃d, i ∈ LD}.
(d) d←− d+ 1.

2. When LD = LDd, reduce the duality gap µ(X,Z) to ǫ or lower with the long-step,
or short-step, or predictor-corrector method.

Below are the inner-loops for the above algorithm framework. For simplicity, we don’t
differentiate c̃d with ǫ, LDd with LD, in our algorithm description.

The long-step method. Set k = 0, µk = 1
P

i/∈LD Ni

(

X0 • Z0 − ∑i∈LD ĉiNi

)

. Choose

parameters 0 < σ < 1, 0 < γ < 1. Assume (X0,y0, Z0) ∈ N−∞(γ)(µ
0), and ĉi ≥ µ0 (i ∈ LD).

Do while µk > ǫ.

1. Choose a commutative scaling matrix P k and solve (10) with µ = σµk.

1If LDd = {1, . . . , n}, we either set ǫ = mini=1,...,n ĉi, or add a dummy variable Xn+1.



2. Find step length αk so that the iterate

(Xk+1,yk+1, Zk+1) = (Xk,yk, Zk) + αk(∆X,∆y,∆Z) ,

µk+1 =
1

∑

i/∈LDNi

(

Xk+1 • Zk+1 −
∑

i∈LD

ĉiNi

)

,

remains in N−∞(γ)(µ
k+1).

3. Set k ←− k + 1.

Note that the search direction is always well-defined due to our choice of the scaling matrices.
The choice of µk in the algorithm implies that for any (Xk,yk, Zk) ∈ N−∞(γ)(µ

k), and for
any i = 1, . . . , n:

−
(

n
∑

i=1

Ni − 1

)

γµk ≤ νi(µ
k)− λj(X

k
i Z

k
i ) ≤ γµk (j = 1, . . . , Ni) . (12)

Therefore, as µk → 0, (Xk,yk, Zk) approximates an optimal solution of (1)-(2).

The short-step method. For all k ≥ 0, the scaling matrix P k is chosen to be in the
commutative class, i.e., PXP T and P−TZP−1 commute. The iterates (Xk,yk, Zk) is kept
in NF (γ)(µ). The step-size αk = 1. When LDd 6= LD, the step-size is chosen as below.

αk =

{

µk−c̃d

µk c̃d > µk ;

1 c̃d ≤ µk .

The parameters σ and γ is specified in the next section to ensure polynomial-time complexity
of the algorithm.

The predictor-corrector method. Choose constant τ ∈ (0, 0.25). Assume (X0,y0, Z0) ∈
NF (τ)(µ

0). For every k ≥ 0 even, let σ = 0. Choose the stepsize αk to be the largest α̃ > 0
such that (Xk,yk, Zk) + α(∆X,∆y,∆Z) ∈ NF (2τ)(µ) for all α ∈ [0, α̃]. When LDd 6= LD,
the step-size is chosen as the following.

αk =

{

µk−c̃d

(1−σ)µk c̃d > σµk ;

α̃ c̃d ≤ σµk .

For every k > 0 odd, let σ = 1 and αk = 1.

4 Complexity of the Algorithm

In this part, we summarize the complexity of our long-step, short-step, and predictor-
corrector interior-point path-following algorithm for the maxdet problem.



4.1 The Long Step Algorithm

Let G∞
def
= sup{condmax(P

kXkP kT
P kZk−1

P kT
) : k = 0, 1, 2, . . .}. Assume in addition, G∞

is upper bounded for all the iterates. Suppose each P k is chosen such that PXP T and
PZ−1P T commute. Then we can choose the step-size αk ≥ α∗, where α∗ is defined as

α∗ def
= min

{

1,
σγ√
G∞

[(

1− 2σ +
σ2

1− γ

)

∑

i/∈LD

Ni +
∑

i∈LD

γĉiNi

ĉi − γµ0

]−1
}

.

In addition,

µk+1 def
= µ

(

Xk+1, Zk+1
)

= [1− (1− σ)αk]µk .

Therefore, the long-step method terminates in at most O[
√
G∞N ln(µ0/ǫ)] iterations.

Especially, the complexity bounds on the long-step path-following algorithm for the maxdet
problem for the NT direction, the HRVW/KSH/M diction, and the dual HRVW/KSH/M
direction are O[N ln(µ0/ǫ)], O[N3/2 ln(µ0/ǫ)], and O[N3/2 ln(µ0/ǫ)], respectively.

4.2 The Short-Step Method

Let 0 < γ < 1 and 0 < σ < 1 be constants satisfying



γ + (1− σ)

√

∑

i/∈LD

Ni





2

≤ 2(1− γ)σγ. (13)

Assume that (X,y, S) ∈ NF (γ)(µ) and (∆X,∆y,∆S) is the solution to (10) with µ on its
right-hand-side replaced by σµ. Suppose that the scaling matrix P is a commutative scaling
matrix. Then

1. µ (X(1), Z(1))
def
= µ (X + ∆X,Z + ∆Z) = σµ (X,Z);

2. (X(1),y(1), Z(1))
def
= (X + ∆X,y + ∆y, Z + ∆Z) ∈ NF (γ)(µ(1)).

Therefore, suppose that the cardinality of the set LD is no more than O
(√

N
)

. Then the

short-step method terminates in at most O
[√

N ln(µ0/ǫ)
]

steps.

4.3 The Predictor-Corrector Method

1. For a constant 0 < τ < 1/2, suppose that (X,y, Z) ∈ NF (τ) (µ(X,Z)), and (∆X,∆y,∆S)
is the solution to (10) with µ on its right-hand-side replaced by 0. Suppose that the
scaling matrix P is a commutative scaling matrix. Let α̃ denote the unique positive

root of α2 [τ+
√

P

i/∈LD Ni]
2

2(1−τ)
+ ατ − τ . Then, for any α ∈ [0, α̃], we have

(a) µ(α)
def
= µ (X(α), Z(α)) = (1− α)µ (X,Z).

(b) [X(α),y(α), Z(α)] ∈ NF (2τ)(µ(α)).

In addition, α̃ = 1/O(N1/2).



2. Suppose that (X,y, Z) ∈ NF (2τ)(µ) for some constant 0 < τ < 0.25. Let σ = 1.
Assume that (∆X,∆y,∆S) is the solution to (10). Suppose that the scaling matrix P
is a commutative scaling matrix. Then

(a) µ(1)
def
= µ(X + ∆X,Z + ∆Z) = µ(X,Z);

(b) (X(1),y(1), Z(1)) ∈ NF (τ)(µ(1)).

Hence, suppose that the cardinality of LD is less thanO
(√

N
)

. Then the predictor-corrector

method terminates in at most O
[√

N ln(µ0/ǫ)
]

steps.
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