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Abstract

In the classical Vehicle Routing Problem (VRP) a fleet of capacitated
vehicles is available to serve a set of customers with known demand. Each
customer is required to be visited by exactly one vehicle and the objective is
to minimize the total distance traveled. In the Split Delivery Vehicle Routing
Problem (SDVRP) the restriction that each customer has to be visited exactly
once is removed, i.e., split deliveries are allowed. In this paper we present a
survey of the state-of-the-art on this important problem.
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1 Introduction

We consider the Split Delivery Vehicle Routing Problem (SDVRP) where a fleet of
capacitated homogeneous vehicles has to serve a set of customers. Each customer
can be visited more than once, contrary to what is usually assumed in the classical
Vehicle Routing Problem (VRP), and the demand of each customer may be greater
than the capacity of the vehicles. There is a single depot for the vehicles and each
vehicle has to start and end its tour at the depot. The problem consists in finding a
set, of vehicle routes that serve all the customers such that the sum of the quantities
delivered in each tour does not exceed the capacity of a vehicle and the total distance
traveled is minimized.

The SDVRP was introduced in the literature only a few years ago by Dror and
Trudeau ([13] and [14]) who motivate the study of the SDVRP by showing that
there can be savings generated by allowing split deliveries. Archetti, Savelsbergh
and Speranza [3] study the maximum possible savings obtained by allowing split
deliveries, while in [4] the same authors present a computational study to show how
the savings depend on the characteristics of the instance. Valid inequalities for the
SDVRP are described in [12]. In [8] a lower bound is proposed for the SDVRP
where the demand of each customer is lower than the capacity of the vehicles and
the quantity delivered by a vehicle when visiting a customer is an integer number.
In [2] the authors analyze the computational complexity of the SDVRP and the case
of small capacity of the vehicles.

Heuristic algorithms for the SDVRP can be found in [13] and [14], where a local
search algorithm is proposed, in [1] for a tabu search and in [5] for an optimization-
based heuristic. In [15] the authors present a mathematical formulation and a



heuristic algorithm for the SDVRP with grid network distances and time windows
constraints.

Real applications of the problem can be found in [20] where the authors con-
sider the problem of managing a fleet of trucks for distributing feed in a large
livestock ranch which is formulated as a split delivery capacitated rural postman
problem with time windows. Several heuristics are proposed to solve the problem
which compare favorably with the working practices on the ranch. Sierksma and
Tijssen [21] consider the problem of determining the flight schedule for helicopters
to off-shore platforms for exchanging crew people employed on these platforms. The
problem is formulated as an SDVRP and several heuristics are proposed. In [6]
Archetti and Speranza consider a waste collection problem where vehicles have a
small capacity and customers can have demands larger than the capacity. A number
of constraints are considered like time windows, different types of wastes, priorities
among customers and different types of vehicles. They propose a heuristic algorithm
that beats the solution implemented by the company which carries out the service.
A similar problem is analyzed in [7], where it is called the Rollon-Rolloff Vehicle
Routing Problem (RRVRP), and in [10].

The paper is organized as follows. In Section 2 we provide the problem formula-
tion. In Section 3 we present computational complexity results and some properties
of the problem. In Section 4 we describe a lower bound and valid inequalities pro-
posed for the SDVRP. In Section 5 we analyze the savings with respect to the
VRP. In Section 6 we present the heuristic algorithms proposed for the SDVRP and
compare them.

2 Problem formulation

The SDVRP can be defined over a graph G = (V, E) with vertex set V = {0,1,...,n}
where 0 denotes the depot while the other vertices are the customers, and F is the
edge set. The traversal cost (also called length) ¢;; of an edge (7, j) € E is supposed
to be non-negative and to satisfy the triangle inequality. An integer demand d; is
associated with each customer i € V — {0}. An unlimited number of vehicles is
available, each with a capacity @Q € Z*. We will however consider an upper bound

m on the number of vehicles needed to serve the customers. For example, one can
n

use m = Y d;. Each vehicle must start and end its route at the depot. The demands
i=1

of the customers must be satisfied, and the quantity delivered in each tour cannot

exceed (). The objective is to minimize the total distance traveled by the vehicles.

We give below a mixed integer programming formulation (P) for the SDVRP (see

[1]). We use the following notations:

z7; is a boolean variable which is equal to 1 if vehicle v travels directly from 7 to
7, and to 0 otherwise,
Yiv 1S the quantity of the demand of ¢ delivered by the v-th vehicle.

The SDVRP can now be formulated as follows:

Min Zzz%xfj (1)

i=0 j=0 v=1



subject to:

n m

>N ay>1 j=0,..n (2)

=0 v=1

n

n
fop—szj:() p=0,...,nv=1,....,m (3)
i=0 =0

SN <I8]-1 v=1,.,m; SCV —{0} (4)

€S jes
n
Yin < d; Zx;’] i=1,.,n,v=1,....m (5)
§=0
m
v=1
n
Zyi’u S Q v = 13 <y T (7)
i=1
37;]]- € {0,1} 1=0,..,n;7=0,..,nv=1,...,m (8)
Y >0 i=1,...,n;v=1..m. 9)

Constraints (2)-(4) are the classical routing constraints: constraints (2) impose
that each vertex is visited at least once, (3) are the flow conservation constraints
while (4) are the subtours elimination constraints. Constraints (5)-(7) concern the
allocation of the demands of the customers among the vehicles: constraints (5) im-
pose that customer 7 can be served by vehicle v only if v passes through 7, constraints
(6) ensure that the entire demand of each vertex is satisfied, while constraints (7)
impose that the quantity delivered by each vehicle does not exceed the capacity.

It has been shown [1] that there always exists an optimal integer solution to (P).

Theorem 1. [1] If (P) has feasible solutions, then there always exists an optimal
solution in which variables y;, € Z+.

3 Complexity and properties

In this section we present the results concerning the computational complexity of
the SDVRP. We also show some properties of the SDVRP which can be really useful
to reduce the solution space when solving the problem.

Theorem 2. [2]/ The SDVRP with Q = 2 can be solved in polynomial time.

Theorem 3. [2] The SDVRP where each customer has unitary demand is NP-hard
for Q > 3.



Definition 1. A SDV RP instance is reducible if an optimal solution erists such
that each vertex is served by as many direct trips as possible from the depot to the
vertex, with full load in each trip, until the demand of each vertex is lower than the
vehicle capacity Q.

When an instance of the problem is reducible, we call reduced the instance which
is obtained by changing the demand d; of customer ¢ with (d; mod @) and deleting
the vertices, and related arcs, when (d; mod @) = 0. The reduction of the original
instance requires a linear time in the number of the vertices.

Theorem 4. [2]/ The SDVRP with Q = 2 is reducible.

In [2] it is also shown that, even in the case of Euclidean distances, the SDVRP
is not reducible for @) > 3.

Dror and Trudeau [13] have shown an interesting property of optimal solutions
to the SDVRP. To understand their result we first need the following definition.

Definition 2. Consider a set C = {iy,iy,...,ix} of customers and suppose that
there exist k routes ry,...,Tx, kK > 2, such that r,, contains customers i, and ty.y1,
w=1,....k—1, and ry contains customers i; and i. Such a configuration is called
a k-split cycle.

i3 |
Figure 1: A 3-split cycle

An example of a 3-split cycle can be found in Figure 1. Dror and Trudeau have
shown that, if the distances satisfy the triangle inequality, then there always exists
an optimal solution to the SDVRP which does not contain k-split cycles, k > 2.

Property 1. [1/] If the cost matriz satisfies the triangle inequality, then there exists
an optimal solution to the SDVRP where there is no k-split cycle (for any k).

This property is of great importance since it reduces remarkably the number of
interesting solutions to the SDVRP, as shown in the following corollary.

Corollary 1. [14] If the cost matriz satisfies the triangle inequality, then there
exists an optimal solution to the SDVRP where no two routes have more than one
customer with a split delivery in common.



We derive another structural property of optimal solutions to the SDVRP in
which we relate the number of splits to the number of routes. Let n; be the number
of deliveries received by customer i, i.e., the number of routes that visit customer
1. We say that customer 7 is a customer with a split delivery if n; > 1 and that the
number of splits at customer ¢ is n; — 1. Therefore, the total number of splits is

equal to Y_» (n; —1).

Property 2. [3] If the cost matriz satisfies the triangle inequality, then there exists
an optimal solution to the SDVRP where the number of splits is less than the number
of routes.

4 A lower bound and valid inequalities

In this section we describe a set of valid inequalities proposed in [12] and a lower
bound for the SDVRP proposed in [8] which is, to the best of our knowledge, the
only lower bound proposed in the literature for the SDVRP.

In [12] Dror, Laporte and Trudeau first analyze the classical VRP valid inequal-
ities in order to check whether they are valid also for the SDVRP. First of all,
they analyze the subtour elimination constraints for the VRP. Defining as N(S) the
number of vehicles required to serve all the vertices in S, they show that, while the
subtour elimination constraints written in the following form:

iZZxZ&- <|S|=N(S) SCV-—{0};]S]>2

v=1 ieS jeS

are not valid for the SDVRP, in the equivalent form

iZ Y.z = N(©S) SCV-{0};]s]>2 (10)

v=1 i€S jeV -5

they represent valid inequalities for the SDVRP. From (10) they derive the following
class of valid inequalities:

SN St < S - N(S) STV {0};18]> 2. (11)

v=1 i€S jeSs 1€S

They also present a class of constraints, called fractional cycle elimination con-
straints, which represent valid inequalities for the SDVRP:
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The authors tested the effectiveness of inequalities (10)-(13) by comparing the
value of the LP relaxation of the problem before and after the introduction of the
inequalities with an upper bound. The upper bound used is the value of the solution
of the algorithm described in [13]. The computational results show that the gap



between the value of the LP relaxation and the upper bound is always below 9%
when the valid inequalities are added to the model, while it can be over 50% if these
inequalities are not considered.

In [8] Belenguer, Martinez and Mota study the polyhedron of the SDVRP finding
valid inequalities that define facets of the polyhedron. These facets are used in a
cutting plane algorithm in order to find a lower bound for the SDVRP. The authors
made computational experiments to test the effectiveness of their lower bound. They
test it on instances from the TSPLIB and randomly generated instances. To measure
the performance of the lower bound, they measure the gap between the lower bound
and an upper bound obtained by solving the instances through a heuristic algorithm
for the VRP. Computational results show that the average gap with respect to
the upper bound is 3.05% for the TSPLIB instances and 7.81% for the randomly
generated instances.

Finally, in [16] an exact algorithm is proposed for the SDVRP with time windows.
It uses a set covering formulation of the problem and a column generation approach
to solve it. The column generation scheme is included in a branch and bound tree
obtaining a branch and price exact algorithm. The algorithm is introduced in [18]
where instances with up to 25 customers are solved. In [16] the algorithm is improved
and solves almost all instances with up to 50 customers and a subset of instances
with 100 customers.

5 SDVRP vs VRP

The interest in the SDVRP comes from the fact that costs can be reduced with
respect to the costs of the VRP by allowing split deliveries. In this section, we
discuss the amount of the saving. This is an important information in practice,
because of the additional organizational difficulties deriving from the multiple visits
to the same customer. In the following we will consider both the case where the
demand of each customer is lower than or equal to the capacity () and the case
where the demand of a customer can be greater than (). For this latter case there
is the need to define a variant of the classical VRP since, when the demand of a
customer is greater than the vehicle capacity, it has to be split and the customer
has to be visited more than once. Thus, in order to distinguish the cases, in this
section we define as extended VRP the problem where each customer is visited the
minimum number of times and extended SDVRP the problem where this restriction
is relaxed.
We will indicate as:

e VRP the problem of finding the optimal solution when the demand of each
customer is lower than or equal to ) and each customer is visited exactly once.
z(VRP) is the value of the corresponding optimal solution;

e SDV RP the problem of finding the optimal solution when the demand of
each customer is lower than or equal to () and each customer can be visited
any number of times. z(SDV RP) is the value of the corresponding optimal
solution;



e VRP* (extended VRP) the problem of finding the optimal solution when the
demand of each customer can be greater than () and each customer is visited
exactly the minimum number of times, i.e., t; = [%], where ¢; is the number
of visits to customer i. z(VRPT) is the value of the corresponding optimal
solution;

e SDVRP* (extended SDVRP) the problem of finding the optimal solution
when the demand of each customer can be greater than ) and each customer
is visited any number of times. z(SDV RP™) is the value of the corresponding
optimal solution.

For both extended problems we present the performance of the following heuristic
algorithm: make full truckload deliveries using out-and-back tours to customers with
demand greater than the vehicle capacity until their remaining demand is less than
or equal to the vehicle capacity. Then, solve a VRP (obtaining a heuristic for the
VRP*) or an SDVRP (obtaining a heuristic for the SDV RP™) to find a minimum
cost set of routes serving the remaining demands of all customers. We will indicate
as:

e HVEPT the heuristic for problem VRP* and z(HYEFP") the value of the cor-
responding solution;

o HSDVEPT the heuristic for problem SDVRP* and z(H PVEP") the value of
the corresponding solution.

5.1 Worst-case analysis

In [3] it is shown that

2(VRP) <o

2(SDVRP) —

and that this bound is tight, i.e., there exists an instance in which the optimal

VRP solution has a value that is twice as large as the value of the optimal SDVRP
solution.

For the case where the demand of each customer can be greater than ) the ratio
is still the same, i.e.,

z(VRPY) <9
z(SDVRP+) —
and this bound is tight.

In [3] the authors have also studied the performance ratio of heuristics HYRP"
and H5PVEPY They found that
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and that both bounds are tight.

The instances used to demonstrate the tightness of the bounds all have a large
vehicle capacity and discrete demands. In [3] there are also results for the case where
the capacity is small and the demands are discrete. In particular, when the capacity
is Q = 3, then % < 3 and Z(‘;(%;L) < 3 and these bounds are tight.

It has long been recognized that a major benefit, if not the major benefit, of
allowing split deliveries is a reduction in the number of delivery routes required to
satisfy all demand. Therefore, it is worthwhile to study the ratio %, where
r(VRP) and r(SDV RP) denote the minimum number of delivery routes required
to satisfy customer demand in a solution to the VRP and the SDVRP, respectively.

In [4] it is shown that

r(VRP)
—_— <2
r(SDVRP) —

and that the bound is tight.

5.2 Computational analysis

While the worst-case results discussed above are of great theoretical and also prac-
tical relevance, important additional information can be obtained from an empirical

study of the ratios % and %.

In Figure 2 (taken from [4]) the ratio % is reported as a function of the
demand of the customers, d, for an instance where n = () = 149 and all customers
share the same location and the same demand d. It is interesting to note that the
ratio reaches its maximum value of 1.987 for demand size 75, i.e., when d = [2].
For demand size 75, an optimal VRP solution has to serve each customer with an
out-and-back tour, i.e., a total of 149 routes are needed, whereas in the SDVRP
solution the demands of two customers can be combined in a single route leaving
only one unit of demand to be picked up by another route, i.e., a total of 75 routes
are needed, resulting in a ratio of 1.987. The other peaks are reached for values of

d equal to [%1, ke N, k> 2.
In [4] the authors study the ratio between costs, i.e.

' 2(SDVRP)>
strictly related to the ratio T(Ts(giggj. They analyze what are the main characteristics

of the instances that influence both ratios, focusing on three aspects:

2VEP) 2150 to see if is

e location of the customers;
e mean demand of the customers;

e variance of the demands of the customers.

Studying the ratio ZZ(VRP )

SSDVEP) for reasonable size instances can only be done using
heuristics, since both the VRP and the SDVRP are NP-hard. The use of heuristics
is further justified by the fact that practitioners will also use heuristics for the solu-
tion of a VRP or an SDVRP, and comparing the values obtained through heuristics
therefore gives a realistic measure of the benefit practitioners may obtain from al-

lowing split deliveries. For their computational study, Archetti, Savelsbergh and
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Figure 2: Ratio % as a function of d for an instance with 149 customers and

vehicles with capacity 149.

Speranza [4] use state-of-the-art meta-heuristics. The VRP solution is obtained us-
ing the granular tabu search heuristic of Toth and Vigo [22]. The SDVRP solution
is obtained using the tabu search heuristic developed by Archetti, Hertz and Sper-
anza [1]. Both algorithms are considered to be highly effective and therefore should
provide reasonably accurate and acceptable ratios.

The computational study confirms that allowing split deliveries can result in
substantial benefits, but also shows that these substantial benefits only occur for
customers demands with fairly specific characteristics. The following insights have
been obtained:

1. the benefits from allowing split deliveries mainly depend on the relation be-
tween mean demand and vehicle capacity and on demand variance; there does
not appear to be a dependence on customer locations;

2. the major benefit of allowing split deliveries appears to be the ability to reduce
the number of delivery routes and, as a consequence, the cost of the routes
(this also explains the fact that there does not appear to be a dependence on
customer locations);

3. the largest benefits are obtained when the mean demand is greater than half
the vehicle capacity but less than three quarters of the vehicle capacity and
the demand variance is relatively small.



6 Heuristics for the SDVRP

In this section we present the heuristic algorithms proposed in the literature to solve
the SDVRP. To the best of our knowledge, three algorithms have been proposed: a
local search heuristic by Dror and Trudeau [13], a tabu search heuristic by Archetti,
Hertz and Speranza [1] and an optimization-based heuristic by Archetti, Savelsbergh
and Speranza [5]. We are also aware of a heuristic by Chen, Golden and Wasil [9],
but since the paper did not yet appear we are unable to provide any additional
information.

6.1 Dror and Trudeau heuristic

We give in this section a short description of the algorithm proposed by Dror and
Trudeau for the SDVRP [13]. The algorithm is designed only for the case where the
demand of each customer is lower than the capacity of the vehicles. The heuristic
is a local search algorithm and is composed of the following two main procedures.

K-split interchange
Consider a vertex ¢ and its total demand d; :

1. remove vertex ¢ from all the routes where it is visited;

2. consider all subsets R of routes such that the total residual capacity is greater
than or equal to d;. For each such subset R compute the total insertion cost
of 7 into all routes of R. Choose the subset R that leads to the least insertion
cost and insert ¢ into all routes of R.

Route addition

Consider a customer ¢ which appears in at least two routes r; and r5. Eliminate the
split of ¢z on these two routes and create a new route in the following way:

1. preserve the four principle route segments on r; and ry (from the depot to the
vertex preceding i and from the vertex succeeding i to the depot);

2. create three routes considering all the possible combinations between the prin-
ciple route segments and i (which must not be split) and choose the best one.

There are 9 possible combinations (for details see [13]). The same procedure is
considered when customer ¢ is split among 3 different routes. In this case there are
19 possible combinations to be considered. If a vertex is visited by more than 3
routes, the algorithm considers all the possible combinations of 2 and 3 routes.

Moreover, Dror and Trudeau use the following classical improvement procedures
which have been developed for the capacitated VRP.

Node interchanges This procedure is based on one-node moves and two-nodes swaps
between routes and is described in detail in [11].

2-opt This is the classical 2-opt procedure for the TSP [19].



Defining boolean variables split_impr and add_impr, the main algorithm works as
follows.

Dror and Trudeau algorithm

1.

6.2

Construct a feasible VRP solution.

Node interchanges: execute all node interchange improvements.
2-opt. execute all 2-opt route improvements.

Set split_impr = "false” and add_impr = "false”.

K-split interchange: execute all k-split interchange improvements. If there is
at least one improvement then set split_impr = "true”.

Route addition: execute all route addition improvements. If there is at least
one improvement then set add_impr = "true”.

. If add_impr = "true” then go to step 5. Otherwise, if split_impr = ”true” go

to step 2 else STOP.

Tabu search heuristic

In [1] a tabu search algorithm for the SDVRP, called SPLITABU, is presented and
tested. It is a very simple algorithm, easy to implement, where there are only two
parameters to be set: the length of the tabu list and the maximum number of
iterations the algorithm can run without improvement of the best solution found.
The algorithm is composed of the three following phases:

e Phase 1: construction of an initial feasible solution. Initially, the instance is

reduced by making as many full load out-and-back tours as possible from the
depot to each vertex. Then, a traveling salesman problem is solved on the
reduced instance by means of the GENIUS algorithm proposed by Gendreau,
Hertz and Laporte [17]. Finally, the giant tour is cut into pieces so that the
capacity constraint is satisfied.

Phase 2: tabu search phase. In the tabu phase, a move from a solution s to a
neighbour solution s’ is performed by inserting a customer 7 into a route r and
by removing ¢ from a subset U of routes visiting 7. The subset U is determined
on the basis of the savings caused by removing 7. The insertion of a customer ¢
into a route r is made with the classical cheapest insertion method. Customer
1 can be totally or partially removed from each route in U. The route r, where
customer ¢ is inserted, can be a route which already visits ¢ or not, and can
be also a new route. When a customer : is added to a route r it can not be
removed for a number of iterations. Similarly, when a customer ¢ is removed
from a route u it can not be added for a number of iterations.

Phase 3: final improvement of the solution found by the tabu search phase.
The final solution of Phase 2 is improved by deleting all k-split cycles and by
applying the GENIUS algorithm to each individual route.



6.3 Optimization-based heuristic

The heuristic proposed in [4] makes use of information provided by the tabu search
described in the previous section in order to construct a set of good routes. These
routes are then passed to a MIP program which determines the best ones. One of
the key ideas underlying this solution approach is that the tabu search can identify
parts of the solution space that are likely to contain high quality solutions.

The simplest use of this idea is the identification of a set C’ of customers which
are likely to be served by a single vehicle in high-quality SDVRP solutions. If
a customer is never, or rarely, split in the solutions encountered during the tabu
search, this information is interpreted as an indication that it is likely that the
customer will be served by a single vehicle in high quality SDVRP solutions (and
therefore should be in the set C"). This idea is implemented as follows. Let S
denote the set of all SDVRP solutions encountered during the tabu search. For each
customer ¢, calculate the node counter n;, the number of times customer i is split in
the solutions in S, where we say that a customer is split £ — 1 times if the customer
is served by k routes in a solution s € S. Let ng,. = max;n;. A customer i is
included in C” if n; < 0.1 X Nypq, and if 7 is not split in the final solution of the tabu
search.

The use of the same idea in the identification of the set R of promising routes is
more involved and summarized here. For each edge (¢, j), calculate n;;, the number
of times edge (1, j) appears in any of the routes of the solutions in S. n;; is the edge
counter of edge (7,7). As before, a large value n;; is interpreted as an indication
that it is likely that edge (7, 7) will be included in high quality SDVRP solutions.
The edge counters n;; guide the construction of a set of promising routes R. The set
R is not used directly in the route optimization IP, because it is usually too large,
but the route optimization IP is solved several times with subsets R of R.

We now describe the route optimization IP. Let ¢, denote the cost of route r.
The formulation has two sets of variables. The binary variable z, takes on value
1 if route r is selected and 0 otherwise. The continuous variable y represents the
quantity delivered to customer ¢ on route r. The integer programming model is
presented below.

min Z Cr &y (14)
T

ny, < Qx, reR (15)
i€r
Yo oyi>di i€V -{0} (16)
reR:er
z,€4{0,1} reR (17)
>0 reR ieV—{0} (18)

The objective function (14) minimizes the total cost of the selected routes. Con-
straints (15) impose that a delivery to a customer i on route 7 can only take place if
route r is selected and that the total quantity delivered on a selected route cannot
exceed the vehicle capacity. Constraints (16) ensure that the demand d; of customer



i is completely satisfied. This formulation is strengthened in [4] with additional con-
straints.
An overview of the proposed approach is presented in Algorithm 1.

Algorithm 1 Optimization-based heuristic

Calculate the node counters n; for all i € V — {0} and determine C".
Calculate the edge counters n;; for all (g, j).
Initialize the best known solution s* with the solution produced by the tabu
search.
Generate a set of promising routes R guided by the edge counters n;.
Sort the routes in R based on a desirability measure.
while a time limit has not been reached or a maximum number of IPs has not
been solved do

Select a subset of routes R of R;

Solve the route optimization IP over the set R;

if the solution found by the route optimization IP improves s* then

Update s*.

end if

end while

6.4 Computational results

While in [1] Dror and Trudeau algorithm and the tabu search heuristic are compared
and in [4] the improvements obtained by the optimization-based heuristic upon the
tabu search heuristic are reported, we compare here the three algorithms on the
same set of instances. This set is formed by 49 instances which are derived from
seven basic instances; the same instances used to test the tabu search algorithm
of Archetti et al. ([1]). These basic instances vary in terms of the number of
customers (ranging from 50 to 199) and in terms of vehicle capacity (ranging from
140 to 200). Six additional set of instances are created by changing the demand of
the customers in the basic instances, but keeping all other characteristics the same.
Each of the new sets of instances is characterized by a lower bound on the demand
of the customers, «, and by an upper bound on the demand of the customers, v,
expressed as a fraction of the vehicle capacity @, i.e., a,y € [0,1] with a < . The
demand d; of customer ¢ is set to

di=[aQ+0(y—a)Q]

for some random § in [0,1], i.e., the demand d; of customer i is chosen randomly
in the interval [a@,yQ@]. The six additional sets of instances are created with the
following lower and upper bound combinations («, 7y): (0.01,0.1), (0.1,0.3), (0.1,0.5),
(0.1,0.9), (0.3,0.7) and (0.7,0.9) (following Dror and Trudeau [13]). Thus, customers
demands are always lower than the vehicle capacity. The reason is that Dror and
Trudeau algorithm works only for this case thus we can only compare the three
algorithms on this case.

The results are shown in Table 1. Here, when o = v = 0 it means the the
demands of the original instance are taken. The performance of the tabu search



heuristic is slightly different from what is reported in [1] for two main reasons:
the instances are not the same and in [1] five different runs were made on each
instance for the tabu search. By observing Table 1 we see that the tabu search
heuristic outperforms Dror and Trudeau heuristic in 41 cases over 49 and that the
optimization-based heuristic improves the tabu search solution in 41 cases over 49.
As observed in [1], the tabu search heuristic produces better results when the de-
mands are small with respect to the vehicle capacity. In Table 2 the computational
times required by the three heuristics are shown and we can observe that the com-
putational times required by the two most effective heuristics are much higher than
the time required by the local search heuristic. The tabu search heuristic takes much
more time to solve instances with large demands. The reason is that in this case the
number of moves to be evaluated at each iteration is very large. Two observations
have to be made on these results. First, in [1] the authors made computational
tests where the tabu search heuristic runs for one minute only and they showed that
also in this case it is much more effective than Dror and Trudeau heuristic. In this
work we let the tabu search run until the end because we needed data to run the
optimization-based heuristic. Second, while the results presented here concern only
a single version of the optimization-based heuristic, in [4] different variants of the
algorithm were tested and, by taking the best one for each instance, it was possible
to improve further the results.

Conclusions

In this survey we have summarized what is known on the Split Delivery Vehicle
Routing Problem. The problem, that is NP-hard even in simple cases, is more
difficult to solve than a Vehicle Routing Problem. This is due to the fact that, while
in the VRP it has to be decided whether a vehicle visits a customer or not, in the
SDVRP a more complex decision has to be taken, that is how much of the demand
of a customer is served by a vehicle. While some heuristics have been designed
and tested, no exact algorithm has been yet proposed and this fact confirms how
difficult this problem is. On the other hand, the cost savings that can be obtained
by allowing split deliveries can be relevant and justify the interest that this problem
has raised.
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